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Abstract—In wireless ad hoc networks, the ability to analyt- assumptions. Traditionally, a mobility model governs the
ically characterize the spatial distribution of terminals plays a changes in the moving direction and speed of terminals ac-
key role in understanding fundamental network QoS measures ¢q4ing to a deterministic approach or a random process. In the

such as throughput per source to destination pair, probability of f t path of t inal b tricted t
successful transmission, connectivity, etc. Consequently, mobility ormer case, movement patn of terminals can be restricted 1o

models that are general enough to capture the major character- Predetermined paths. For ad hoc environments, such mobility
istics of a realistic movement profile, and yet are simple enough models are impractical since wireless ad hoc networks are
to mathematically formulate its long-run behavior, are highly created “on the fly”, and collecting data to generate the paths
desirable. for all situations can be very complicated. Thus, a mobility

In this paper, we propose a generalized random mobility model -
capable of capturing several mobility scenarios and give a math- model that dictates the movement of hosts due to a random

ematical framework for its exact analysis over one-dimensional Process, that israndom mobility modelis more appropriate
mobility terrains. The model provides the flexibility to capture for the performance evaluation of these networks. Surveys for
hotspots where mobiles accumulate with higher probability and poth models are presented in [1], [2].

spend more time. The selection process of hotspots is random In general, random mobility models formulate the move-

and correlations between the consecutive hotspot decisions can f bile h b . d | h
be successfully modeled. Furthermore, the times spent at the MeNt pattern of mobile hosts by consecutive random lengt

destinations can be dependent on the location of destination point, intervals called movement epochs. During each epoch, mobile
the speed of movement can be a function of distance that is being terminal moves at a constant speed, and at a constant direction
traveled, and the acceleration characteristics of vehicles can be for a random amount of time. The speed and direction choice
incorporated into the model. Our solution framework formulates for each epoch may or may not be correlated with their

the model as a semi-Markov process using a special discretization | in th . h d bili h . f
technique. We provided long-run location and speed distributions V&!U€s In the previous epochs, and mobility characteristics 0

by closed-form expressions for one-dimensional regions (e.g., aother terminals. For instance, according to the random walk

highway). mobility model [2], each terminals movement is uncorrelated
Index Terms— Mobility Modeling, Long-Run Analysis, semi- With others movement, and the speed and direction choices
Markov Processes, Ad Hoc Networks for each epoch are also uncorrelated with their previous
choices. The random waypoint mobility model [3] includes
|. INTRODUCTION pauses at the end of movement epochs in the random walk

IRELESS ad hoc networks are comprised of wirelessodel to make it more applicable to different scenarios.

mobile nodes that can dynamically form a networMore formally, according to the random waypoint mobility
in a self-organizing manner without the need for a prenodel, a mobile node determines a destination point that is
existing fixed infrastructure. Nodes in an ad hoc network catistributeduniformly within the physical terrain and moves in
move according to many different mobility profiles. Thereforehe direction of that destination at a constant speed. This speed
mobility models that dictate the movement behavior of i& selected uniformly fromuv,in, Umaez] Wherevy,,, > 0, and
mobile terminal play a key role in analyzing the impact oit is independenfrom the destination and starting points of
dynamically changing topology on the performance of theglee movement epoch, and also the distance that is going to be
networks, which can be done through analytical or simulatidraveled. After reaching the destination, mobile pauses for a
based studies. In this paper, we consider a generalized randamdom amount of time, which has teame distributiorfor all
mobility model that is flexible enough to capture differentlestination points, and the same movement process is repeated
mobility scenarios, and provide its long-run location and speéy selecting a new destination and speed jailependently
distributions by closed form expressions for one-dimensiorfabm the same pair of the previous movement epoch.
mobility terrains. A shortcoming of the random mobility models is that the

In what follows, we categorize the existing mobility modelsnovement profiles that are generated with respect to them may

for wireless ad hoc networks, and briefly summarize themot be consistent with the major characteristics of a realistic



scenario. For instance, as it also mentioned in [1], random be general and can be conditionally dependent on the
walk and random waypoint mobility like models may generate starting point of the movement epoch.
unrealistic movement patterns such as “sudden stops” and The random speed for each epoch is drawn from a general
“sharp turns”. In [4], [5], [6], authors propose models that distribution function that can be conditionally dependent
can capture correlation between the speed and the direction on the starting and destination locations of the movement
choices of consecutive movement epochs and therefore these epoch, and the current location of mobile terminal if
models may generate a pattern which is smoother with less necessary.
sharp turns. Furthermore, as it is also criticized in [7], [8], ¢ The pause time at each destination is selected randomly
selecting speed independently from the distance that is going from a distribution that is dependent on the location of
to be traveled may end up in unrealistic mobility profiles where  the destination point.
mobiles travel long distances with low speeds. The fact that we make the mobility modeling with respect to
The common limitation of the random mobility modelghese generalized approaches has number of advantages. First,
described above is that one can not model a scenario whigthce destinations are selected from a general distribution, a
incorporates predefined pathways that mobiles must follow antbvement scenario in which terminals select some specific
specific destinations on those paths where mobiles accumulaigations, for examplehotspots as destination with higher
with higher probability. The models presented in [9], [10] foprobability, can be easily captured. Furthermore, some mobil-
cuses on this problem by taking a more deterministic approaiep scenarios may require a Markovian dependency between
that can capture obstacles and predefined pathways betwggndestination points of consecutive movement epochs. For
them on the physical terrain. instance, the probability of selecting a hotspot as destination
In the analytical studies for the performance analysis ehn be different from different starting points. This case
wireless ad hoc networks, closed form expressions for tban be naturally incorporated into our model by employing
spatial node distribution are very desirable to understand long-distribution function for destinations that is conditionally
run behavior of the network spatial behavior. For instance, tdependent on the starting points.
analysis that are presented in [11], [12], [13] to estimate theSecond, the generic approach for determining speed pro-
capacity per source to destination pair of these networks &iieles a unique opportunity to select speed according to the
significantly dependent on the spatial distribution of mobildistance that is going to be traveled, and also a method
nodes. Additionally, for some scenarios in which terminal® model variable speed during movement epochs. Clearly,
can be highly mobile on a wide region, the spatial distributioifi the speed of the terminal can vary during moving, then
of offered traffic may not be ignored in determining th@ur model can even be used to capture diffemsteleration
capacity of asynchronous MAC layer protocols. Observe thetiaracteristics of vehicles. Finally, by employing a pause time
the analysis of this case requires an accurate knowledge of dstribution for each epoch that is a function of destination
spatial distribution of nodes. The analytical work presenteshordinate, we reached to the flexibility of pausing different
in [14] also considers the station locations for the MAGmes at at different locations.
layer throughput analysis but the terminals are assumed to b&or some sophisticated mobility models, performing its
uniformly distributed in the region, which may not be validong-run analysis first over one-dimensional regions will be
for different mobility scenarios. Moreover, this knowledge caoseful in gaining some insight into the methodology that has
be also used in evaluating the connectivity properties of &e followed for the analysis of higher dimensions. Thus, in this
hoc networks, which have been extensively studied in [15japer, we concentrate our analysis to one-dimensional regions,
[16]. In addition to these, the distribution of link distanceand develop an analytical framework that provide closed form
between mobile terminals, which is an important characteriségpressions for the long-run location and speed distributions.
of wireless ad hoc networks [17], [18], can be obtained froM/e also believe that the analytical results presented can
the spatial distribution of terminals. provide a methodology to analytically formulate the funda-
Hence in this paper we propose a generalized randenental properties of wireless ad hoc networks for number
mobility model that is general enough to capture the majgbphisticated mobility scenarios (e.g., capacity, connectivity).
characteristics of a realistic movement profile, and yet is sim-
ple enough to mathematically formulate its long-run behavidy. Related work
with analytical expressions. The mobility pattern of a terminal There have been a number of works attempting to obtain
that moves according to this generalized model is composggshtial node distribution for the ad hoc environments where
consecutive movement epochs in a closed region and ittégminals move according to random walk or random waypoint
uncorrelated with the movement behavior of other terminalsobility models. The simulation studies that are presented
During each movement epoch, mobile terminal at first mov@s [19] and [20] for the random waypoint mobility model
on the finite line segment joining the starting and destinatioghowed that the long-run spatial distribution of mobiles is
points of the epoch at a random speed and then it pausesdependent from their initial placement in the simulation
the destination for a random amount of time. The generaliffea, and also observed that resulting distribution is more
of our model is actually originating from the approach that waccumulated at the center of the region. In [21], the movement
took to determine the destination point, movement speed, gsattern of the same mobility model is characterized as a
pause time at the destination, and can be explained as follogtgichastic process, and analytical expressions for the long-
e The distribution of the destination points are assumed tan location distribution are derived. In [22], authors not



only concentrate on the analytical expressions for long-rud -~ ¢
spatial distribution of random waypoint model, butalsoonthe @ « =+ =+« el au s o+ e+ e
limiting distribution of speed and procedures for the accurafg, |
simulation of this mobility model as well. The simulation
study presented in [7] also concentrated in the same model,

and examined average node speed at the steady-state. 'Iw’e%) as the pause time spent at destination pdipt With

pointed out that the closer,,;,, to zero, the more time it takes ggpect to these notations, and the mobility modeling approach

for the simulation of the mobility model to reach stability. In, proposed in this paper, we define the following parameters:
[8], this work is extended by analytical studies and authors the conditional probability density function

provided steady-state average speed distribution for severé{’(d\xs: X

random mobility models in which the speed for a movement (pdf) of X4 given X,

epoch is chosen independently from the destination of thatV|¥XsXa: the conditional pdf oft” given X, and Xy,

epoch. As a byproduct of their analytical formulation, authors Tp| X the conditional pdf off}, given Xg.

also proposed a simulation methodology that eliminates thgnce, the mobility formulation that is performed according to
variations in the average nodal speed of these kinds of mobiltye generalized random mobility model can be characterized
models. In [23], authors provide an analytical framework fddy the triplet< fx, x.,, fv|x..x. f1,|x, >

the steady-state speed and residual distance analysis of randoBefore we proceed further, we note that and X, actually
waypoint like mobility models, and similar to [8], they alsorepresent the destination points of any two consecutive move-
proposed methodology for the efficient simulation of thos@ent epochs, and the conditional ptif,| x, that identifies the
mobility models. In [24], a statistical analysis is done tdlistribution of X; given X at the embedded points in time
identify the conditions in which the spatial node distributiodivhere a new epoch starts, is referred séschastic density

of random waypoint mobility model, and a variant of twokernelby Feller [25]. We will identify the restrictions on the
dimensional random walk motion can be approximated wighoice of fx, x, required for the long-run characterization as
uniform distribution. we proceed further in the analysis.

While each of the analytical and simulation studies men- Now as we have noted in Section |, each terminals move-
tioned above provide a comprehensive approach for the logent is assumed to be independent from others. Thus, it is
run characteristics of the random walk and waypoint likenough to model a single terminals behavior for the long-
mobility models, none attempts to make major extensions & analysis. For this purpose, 1&(t) denote the state of
these models so that they describe a more realistic pattdfi¢ mobile terminal at time. According to the specifications
It is clear that, mobility models that are defined according ® the mobility model we proposed, the stochastic process
deterministic parameters such as predetermined pathways &Xdt),t > 0} must be defined on a state space that has
obstacles, are more realistic than the random mobility modegeparate dimensions for current location, destination, and
However, as the deterministic dimension of the mobility modépeed, and more importantly, the ranges of these dimensions
expands the possibility of deriving long-run properties of th@ust be continuous. However, in the analytical framework we
model in terms of closed from expressions decreases. The nissistruct, we use a discretization method and describe the
significant differences between the mobility model proposédobility behavior of nodes with a stochastic process that is
in this paper and other random or deterministic models are t@i@fined on a multidimensionéiscretestate space. In addition,
degrees of generality in mobility modeling and simplicity foinstead of observing the state of a terminal continuously, we
the long-run analysis. will observe it at embedded timeg,, for £ € N, such that

The next section provides the mobility formulation accordlo = 0, Tx+1 > Tk, Vk € Z*. Also, these embedded times
ing to our mobility model, basic definitions, and our approacie dependent on the evolution of the system that dictates the
for long-run analysis. In the third section the analytical resulf§ovement behavior of the mobile node. The following list
are presented with example scenarios. Section IV concludegmally defines the assumptions that the analytical framework

Discretization of = [0, a] according to cells of sizé\z = 2.

the paper. is built on:
Ai: The regionR is discretisized inta cells of the same size,
that are denoted by; = [i-1)Az,iAz], i = 0...n —

II. MOBILITY FORMULATION . .
1, as shown in Fig. 1, wherdx = 2 for n > 1. A

In this section, we provide the formal description of the  mobile terminal is assumed to occupy one of ths at
generalized random mobility model introduced in Section | for  any moment in time, and movement epochs start from a
one-dimensional mobility terrains, and construct an analytical cell and ends up at a different destination cell.
framework for its long-run analysis. Lét = [0,a] represent A,: The random variabld’, which denotes the speed of a
the region on which mobile terminals operate, and denote mobile during a movement epoch, is approximated by
X, € R and X, € R as the random variables corresponding  the discrete random variablé* taking values in the state
to the starting and destination points of a movement epoch, space

respectively. Furthermore, let the random variabledefined Sv+ = {21,722, ., 2m}, (1)
on the state spac@min,Vmaz], Where vy, > 0, denote
the speed of a terminal while moving frodi, to X,. In wherez, = r Av, r =1,...,m, for some discretization

addition, denote the random variable, with state space parameteAv > 0, andm > 1 such thatAv < vy, and



Vmaz < MA.

TABLE |

TRANSITION PROBABILITIES OF THE PROCESESy, k € N}

Asz: Observation timel}, point to the time of occurrence of
one of the following events: Event Transition Probability | Conditiorr
E;: The terminal, which is in pause mode, selects [aE: (€i;0) = (ci, ¢4, 20, 1) %T‘mvru,j i#
new destination that is different from the current cell E> | (ci,¢j,2r, 1) = (cit1,¢5,2r,1) 1 j>it1
occupied, and jumps into moving state at the currept ¢i ¢ #r, 1) = (ciz1,¢5,2r, 1) 1 J<i—1
P Jamp 9 By [ (circprzr ) = (,0) I i—=1

cell —
’ L . . *4,7=0,...

The terminal, which is traveling in the direction of 7

the target cell, moves out from the current cell and

enters the neighbor cell that lies on the path betwegtherefore, the stochastic proceisy,, 7),; k € N} with finite-
the current and destination cells, state spaces satisfies the conditions for beingarkov Re-
The terminal reaches to the destination cell angewal Processand the procesgX (t),t > 0} can be called as
enters the pause mode at that location. the semi-Markov proces¢SMP) associated withSy, Ty; k €
Notice that the higher the degree of discretization for ti¥} [26]. Moreover, since the general distributions for des-
closed regionR is selected, the better approximation catination, speed, and pause time parameters are assumed to
be done to the exact location of the terminals. Also, as tlhe time-homogeneous the model proposed, for each pair
discretization parametekv — 0 (i.e., m — oc), the discrete (s,s’) € S x S, the distribution of state holding time in state
approximating random variablé* becomes indistinguishable s before moving to state’, given that the next state to be
from the original random variabl&. Therefore, a§n, m} —  visited iss’, would be independent @f. Hence, based on the
oo, we converge to model with continuous state space. For tiesults provided in [26] and [27] for the theory of semi-Markov
rest of this paper, we will use the terdiscretisized mobility processes, the transitions of the proc&gg) from states to
formulationto refer to the version of the generalized randorstates’ at the time instant#), can be governed by thdiscrete-
mobility modeling approach that is constructed according time Markov chain (DTMC){S;,k € N} with finite-state
the assumptionsl,, A5, and As. spaceS and transition probability matri = [p; ], where
Now, letSy, k € N, denote the state of the mobile terminap, ;» = Pr{S;1 = 5’| Sy = s}, suchthal_ , s ps s = 1 for
at timeT}. Given the assumptiond;, A, and As, the finite- all s € S. The procesqSy, k € N} is also calledembedded
state space 0%, will be defined as follows: DTMC of SMP.
Consequently, if the DTMC{S;,k € N} satisfies the
§ = ergodicity conditions, and if the mean state holding times are
finite, then the SMP{X(¢),t > 0} can be characterized at
the long-run. Clearly, if long-run proportion of times spent
) . . L at the states of the discrete state sp&care known, then
wh_ereci |s_the current cell occupl_edj |s_the_3 destlnatlor_1 ce_II, by aggregating the states that has the same current cell
z, IS the discretisized speed, ands the indicator of being in component, that is¢;, the long-run location distribution for

the mode of moving towards the target cell, or pausing at the, giscretisized region can be easily obtained. After this,

destination. _ by observing the limiting behavior of that discrete result as
Hence, the stochastic procefX(t),t > 0} that represents ;" angy, — oo, the continuous result can be derived.
the state of the mobile terminal at timgcan be redefined on The same approach can be also used to obtain long-run speed
the finite-state spacé by the following expression: distribution but in that case, the states with the same speed
component, that isz,., must be aggregated. In the following
section, we will at first generate the irreducible stochastic
where the timesly, Ts, ... are the successive times of tranmatrix P exp”ciﬂy_ Then, we will app|y this approach to

sitions of X(¢), and So,S1, S, ... represent the successiveerive long-run location and speed distributions of continuous
states occupied b¥X(t). case.
Observe that by constructing a state space that has a separate
dimension for the destination cell of moving terminals, the |,
future evolution of the stochastic proce$$;,k € N}
becomes dependent only on the current state of the mobile . . i )
terminal, not on its history at previous observation points, N this section, we apply our solution framework with
Furthermore, assume that current state occupieX by is s. the ultimate aim of finding closed form expressions for the
Once the state’ € S has been selected with some probabilit}P"9-run location and speed distributions over the given one-
as the next state to be visited, the distribution of sojourn tinsimensional mobility terrain = [0,a].
in states can be determined from the components of state Now to describe the tra'nsmon.probabllltles of the embedded
Consequently, the following relationship will be valid for allPTMC {Sk,k € N}, we first define:
k € N, and all possible setgs, s’} C S.

m—1Lr=1...m

FEs:

Es:

{(CiacjazT7Q) | Z,]ZO,,n—l,Z#j,
r=1,...,m,qg=1}

U {(627q)|1:037n717q:0} (2)

X(t) =S, if T, <t< Tk+1

A NALYTICAL RESULTS FORDISCRETISIZED AND
CONTINUOUS MOBILITY FORMULATIONS

Pr{Xd c Cj|)(S S Ci}

Tl =

Pr{Spi1 = Ths1 — Ti < t|Sp = 8, Tk, . . (G+1) Az

1{Si+1 =8, Thy1 — T < ¢Sk = s, Tk, _ / dza f,px. (@l Xs € c2),
J

= Pr{SkH = S/, Tk+1 — Tk S t ‘ Sk = S}

'7SOaTO} (3)

Az



where the matricest|”, 4", andA{), i=0,...,n—1, are
1

’“\‘\ /1 Ty V1120 T3 V1130 _ . .
. (m(n —1)+1) x (m(n — 1) + 1), and defined as
X Toiz (i)
o, T, _ e _ Lnie1)
SN - 1% e 1.
\ - In(n—i—2) eg’,)
. (1)
AY =| BP ... BY B 10 7
,?7‘.::”‘/1\0.3 :ﬁ”m.x % 3 Tzr:, 3, 1 0 il ‘ ‘ il 1 ( )
s, sl B, ff T |

11‘7,‘::‘01/2\0:& [ ‘1/2 1.3
4’1 4’ where upper left block oﬂgl) is a zero matrix of sizeni x

, o m, andl;, denote theh x h identity matrix for some positive
zlngdi :SQtfatte transition diagram for the proc€&s., k € N}, wheren = 4 integer h. Moreover, thel x m row vectorBj(.’), for i,j —

0,...,n —1, wherei # j, and column vectorsagi), eéi) of

respective sizesi(i+1) x 1 andm(n—1) x 1, are respectively
for 4,7 = 0,...,n — 1. Next, sinceV is allowed to be defined by

dependent onX, and X, we define the probability mass @ - @
function of V* given X, € ¢; and X4 € ¢;, that is, for a B)” = l_JT_Vmugj? ey’ =[0,...,0,em—1]",
movement epoch that had startedcatind destined te;, by !

(4) T
e, =lem-1,0,...,0 (8)
Uplij = Pr{V* = 2|X, € ¢, Xq € ¢;} 2 | ]
rAv wherev,, i ; = [V1)ij» - - - Vmli,j)» @dey, is thel x h vector
= /( s fvix. x,(v|Xs € ¢i, Xa € ¢j) dv,(4)  of ones. The remaining blocks of the matricé$’, A{"”, and
r—1)Av

Aé”) are zero matrices of sizes that can be easily derived from
forr=1,...,m. the dimensions of the other blocks.

Based on the eventd;, E,, and E5 that cause state Before we can proceed with the long-run analysis of the
changes, and;; and v,;; and given above, the possiblesmMp (X(¢),¢ > 0}, we must first find the steady-state
transitions and the corresponding transition probabilities of tiygstribution of the embedded DTMES;,, k € N} with the
embedded DTMC can be grouped as in Table I. transition probability matrix? given in (6). Clearly, this

It should be noted from Table | that whely occurs, the distribution exists if and only if a steady-state distribution
mobile that is located at; jumps to moving mode in the exists for X, 1, and {Sy,k € N} satisfies the ergodicity
current cell occupied. We enforced these transitions for t@gnditions. Hence, we focus on these issues now.
purpose of uniquely identifying moving and pausing terminals. ynder the “mild” regularity conditions defined by Feller
In Fig. 2 we depicted the state transition diagram of the procgss;] on fxux. (zalzs), there exists a steady-state distribution
{Sk,k € N} for a simple case where n=4 and m=2. for X, with pdf fx_(z4), which can be uniquely determined

Next, we formulate the transition probability matri® from the solution of the following integral equation
of the process{Sy,k € N} in full generality. Clearly the

structure of the matrix? depends on the order imposed on Ix.(zq) :/ fxaix. (@alzs) fx, (ws)dxs )

the states inS. The ordering that we have decided on is 0

S = {80,81,...,8,-1}, where eachS; hasm(n — 1) + 1 We note that the integral equation given above, which is

states according to the following order: used to obtain the steady-state behavior of the discrete?ime

Sy = {(ci,c0, 21, 1)y (¢i Cor 2ms 1)y qontinuous—state Markov proce@é’s}, has an analogy to the

linear systemypT = ¢, with |¢, = 1 whereT = [7;].

(cir €i-1, 21, 1), (€4, €im1, 2m, 1), (€, 0), Basically, it is theanalog version of ¢T" = ¢. Clearly if

(¢i Cir, 215 1), 00 (s Ciga, 2my 1), - the distribution of X; is assumed to be independent from

(cisen—1,21,1), ..., (¢is Cnm1, 2m, 1)} (5) X,, then the solution of the integral equation (9) would be

Based on this ordering, the transition probability matfix S|mple.tngevetr, flgrv?/ther_lras$s, dsr'vi'(rfﬁ;ﬁ(xd) .C?T tbe .
has the following discrete-time level-dependent quasi-birt _ Very tedious task. Ve will return bac IS point fater in

. bsection 11I-B that concentrates on the mobility scenarios
and-death process (QBD) form [28]: u . :
P (QBD) [28] where the choice of; is dependent orkX.
A§°> A(()O) Hence, if the pdffx_(z4) can be uniquely determined from
Agl) A§1) A(()l) the solution of (9), then the probability of starting a movement
P = (6) 1Since X4 is the X of the next mobility epochX and X4 can be used

A(n—2) A(n—2) A(n—2) interchangeably at the long-run.
2 %n_l) (()n_l) 2The stochastic procegsXs} changes its state at embedded time instants
A2 A1 that represent the starting time of a new movement epoch.



epoch from celk; at the steady-state, which is denoteddyy pausing (i.e.g = 0) terminals. Therefore, sinc& = [0, a

1=0,...,n—1, will be given by is discretisized by cells of sizAz, the expected time that is
(i+1) Az going to be spent in a cel; by moving terminals is simply
i = dx T 10
© /mz a fx,(za) (10) 5 Az 14
Next, we examine the ergodicity S, k € N}. -
Lemma 1:1f the pdf fx, (z4) can be uniquely determinedwhere s = (c¢;,cj,2r,1), 4,j = 0,...,n — 1, andr =
from the integral equation (9), and if,;; > 0, i,j = 1,...,m, such thati # j. To formulate the mean time that is

0,...,n—1andr = 1,...,m, then the embedded DTMC Spent in a state of the form= (c;,0), i = 0,...,n — 1, we

{Sk, k € N} defined on state spac®= {S;,S1,...,S,_1}, also define the following notation:

with transition probability matrix” defined as in (6), will be - _ _

irreducible and aperiodic. b= B[] = EE"'XS € el
Proof: Please refer to Appendix. ] = / Pr{T, > t,|X; € ¢;} dt, (15)

Thus, when the conditions ofrgodicity for the DTMC 0

{Sk,k € N} are satisfied, the steady-state distribution of il\otice that the following equation

which we denote byr, for states € S;, i =0...n—1, can ~

be uniquely determined by solving the matrix equation Z Tsls < 00 (16)

seS
7P =, with |r|; =1 11) . o ) o ) o
is satisfied only if the minimum speed a mobile can attain is

wherenw = [mg,71,...,mh—1], @andm; is a (row) vector of nonzero, and mean pause time spent at destinations are finite.

sizem(n—1)+1 whose elements are;, Vs € S;, according Hence, if the mobility characterization parametgfis and

to the order given by (S)r; can be also called the solutionfr, |, are selected appropriately to satisfy these conditions,

vector for leveli, i =0,...,n — 1, as in [29]. then the conditions given in [26] for the long-run character-
Next, we examine the solution of the linear system given byation of SMPs are satisfied, arfé,, which corresponds to

(11). To the best of our knowledge, if there are no additionking-run proportion of time that the process is in statds

assumptions made on the properties of the matixhe most simply

efficient direct computational procedure to find the steady-state p_ Tsts Vs S a7
distribution of finite-state level-dependent QBDs is presented TN ity 5
in [28]. By using that procedure, one can obtaimumerically s'es

for some moderate values efandm. However, as we made Finally, after aggregating the states that belong to the same
clear before, we are aimed at finding the limiting behaviqgye| (j.e.,s;, i = 0,...,n — 1) of the level-dependent QBD
of the long-run distributions for the discretisized case agocess{S;,k € N}, we obtained the following result for
{n,m} — oco. Clearly this can only be done after deriving thehe long-run location distribution of the discretisized one-
location and speed distributions in closed from expressioRgmensional regions.
Therefore, we focused on an alternative direct approach anq emma 3: For the mobile terminal, whose mobility pattern
derived the following result. _ _ is formulated according to the discretisized version of the
Lemma 2:If the conditions given in Lemma 1 for thefXles,fV‘XSAdefT x, > mobility characterization, lep,,
ergodicity of the DTMC{S;,k € N} are satisfied, then ; """ 1 1, denote the long-run proportion of time that
the solution vectorr; for level i, i = 0,...,n — 1, of the terminal stays in celt;. If the conditions given in Lemma 1
level-dependent QBD process given in (6), with the matricgg)|ds, and if the equation (16) is satisfied, then
Agf), Ag), andAgz) defined as in (7), is given by

71'7;:[71'7;707...,7['1'77;,...,771'_’”_1}/]\7 (12) bi = n—1 R (18)
> o (1 =1,)E[T,] + Dy, Az
where +=0
n—1 o where
D Pr Tl Vimjeg,  1f J < ey
{=1i L ] i—1 n— m 1
™ = Qpl (]‘_Ti”)’ if =1 (13) kz = ZZQO/ Tjle fl/y-w’j
v . . j=0 (=i il
> we Tile Vmley, W j > ne1 i m
=0 1
YD e > — vrjeys (19)
n—1 J 5]
andN =3 2 [mil,. j=i+1 =0 r=1 7T
Proof: Please refer to Appendix. ] q
To characterize the SMRX(t),t > 0} at the long-run, an 1
it remains to formulate the expected state holding times. For D, = Z k, (20)
this purpose, let, be the expected holding time in statec =0

S. Recall that in Section Il, we decomposed the state space
S into two groups that represent moving (i.e.= 1), and Proof: Please refer to Appendix. [ ]



Next, we turn our attention to the limiting behavior ofcomponent, and take the limit of the resulting expression
the discrete result derived in Lemma 3, and summarize s {Ax,Av} — 0. Thus, for the mobile terminal whose
fundamental result for the long-run location distribution.  movement behavior is characterized according to the triplet

Theorem 1:For the mobile terminal, whose mobility pat-< fx,x,, fv|x, x. fr,;x, >, et the continuous random
tern is characterized byc fx,x., fv|x.,x. fr,1x, >, let variable V(t) defined on the state spad@} U {v|vmin <
[x(z), z € [0,al], denote the pdf of its location distribution aty < v,,,,} denote the speed of a mobile terminal at time
the long-run. If the pdffx, (z4) can be uniquely determinedNote that, since the mobile can be in pausing mode at some

from the integral equation (9), an®[T,|X, = z,] < pointintime,V(t) can also attain the zero value. Next, 16t
o0, Vg € [0,a], and fyx, x, > 0, YU € [Umin,Umaz], represent the random variable having the long-run distribution
andVxg, x4 € [0, a], then of V(t), and denote its pdf byf;. Finally, referring back
D)E[T,| X, = ] + kx (x to assumptiond,, denote the discrete approximation to the
fx(z) = fx. @ EIT, | Lt kx(o) (21) continuous random variable by V*. Clearly, the state space

E[T,0< X, <a]+ D of V* must be

Sy = {0} USy+ = {20,21,22,...,2m} (30)

:/dxd/d‘rs gX(xsvxd)+/dxd/dxs 9x (7, za) (22) wherez, = rAv, r=0,1,...,m.
0 T 0

Now, let ¢,. denote the long-run proportion of time that a
where mobile possesses speed r =0, 1, ..., m. After aggregating
the components of the vectors ;, ¢, = 0,...,n—1, defined
9x (s, 2a) =[x, (Ts) fxa1x, (Tal2s) Bl 1 Xo=z:, Xa=2a], (23)  py (13) according to the states & that have the same speed
and component, and using the mean times that are going to be
spent in those states we get

where

Umaz 1
e Xamed = [ i (elen ), (29

n—1 . .
min ( > i (1 —15) E[T},] )/N, if r=0
and " i=0
D = dx kX (a:) (25) - n—1 i—1n—1
o o= (5 ae(X Z e 2vvies
Proof: Please refer to Appendix. [ ] + =l . v N. else
It should be noted that if the distribution &fis independent j:zi: 2:: PTIIE = it ))/ ’
from X, and X, then the pdff,, can be employed instead of (31)
fvix..x, for mobility characterization, anéx (22), andD where N = 32" ¢, (1 — 7,,)E[T},,] + D, Ax. Taking the
(25) simplifies to limit of this discrete result agAxz, Av} — 0, we reached to
1 " a the following theorem, which we state without proof.
kx(x) = E[f]/ dmd/ dzs fx,(@s) fx,x. (Ta|zs) Theorem 2:For the mobile terminal, whose mobility pat-
Y o z tern is characterized by Ixalxe Jvix. xa JT,1x0 > if the
+ E[— / dxd/ dzs fx.(zs)fx,|x. (zd|7:)(26) conditions that are given in Theorem 1 for the parameters
[‘1/] 0 X (@) fxalx, (@) fxux., ElTy|Xs = 2], and fy|x, x, are satisfied, then
D =E[-]D (27) E[T,|0<X,<al6(3) ¢ ~ _
v i BToosx.<azp’ 10=0
where [y (D) = [ dako (a5) _ ,
_ a xq m, |f v E [’Umin,'Umam]
D =/ dwd/ drs(za — xs)fx, () [x,0x, (TalTs) Pt (32)
and _
+ [ dna [ oo, =) (@) P ol 28) E[7] — D )

ET,|0 <X, <a]+D
Notice thatD is actually the average distance between the two
points X, and X, drawn at random according to the pdfg,, Where

andfx, x,, respectively. In addition, iX, is also independent & o " a J R 24
from X, thenfx, can be used instead ¢k, x,, andkx (22) v(2,0) = , 59y (s, 24,0)  (34)
further simplifies to a -z
= a + / da:d/ drsgy (s, 4, 0),
T 0

bxte) =2 Bl [ dea [ o predtnten @)
z Wi

Having defined the long-run location distribution, we now 1
concentrate on the long-run speed distribution. Clearly ity (zs,2a, 0)=fx. (2s)fxa x. (zals) = frx. x4 (O2s, 2a)
order to achieve this, we need to aggregate the steady-state (35)
probabilities of the states 6 that has the same speed



It should be noted that, if the distributions &F; andT}, are in (40) (i.e., E[T,] = 0 for first case, andE[;] = L for the
independent fromX, and if distribution ofVV is also inde- other case), then the results will match the pdfs presented in
pendent ofX; and X4, then the mobility characterization can[21].
be done by the triplek fx,, fv, fr, >, and the formulation  Example 2:In the random waypoint mobility model we
of fy(v) and E[V] for this simplified mobility formulation analyzed by Example ¥/ is assumed to be independent from
will match to the results that are derived in [8] for a class dfX; — X4/, that is, the distance traveled during a movement
mobility models where speed is selected independently fragpoch. However, in most of the realistic scenaridsends to
the distance that is going to be traveled. increase a$X, — X,4| does. Thus, for this example, we make

Finally, from the results presented by Theorems 1 and 2, itas improvement on the random waypoint model by proposing
clear that the dependency &f; on X, makes the fundamentala fv|x, x, that provides the opportunity to determirié
difference. Therefore, in the following two subsections, weroportional to the random variabl® = |X, — X,4| with
will at fist concentrate on some example scenarios that uségh probability.
fx, (i.e. distribution of X, is independent fromXj) for Now, considered a truncated normal distribution [30] ¥or
mobility characterization. Then, we will proceed to moraccording to the pdf given by
complicated scenarios by employing the stochastic densit

kernel fx, x. for mobility formulation. vix., X (V]2s, Ta)
Z('Ufﬂ(wénmd))
= z : (42)
A. Variants of mobility characterizations done By, o (P (Umaz—tlZeTa)y g Umin—i(e,Ta) ))

o g

Example 1:The random waypoint model [3] representsor v,,;,, < v < v,,.. Wheres > 0, and
the simplest nontrivial case of our generalized modeling -
approach, and can be characterized according to the triplet (., z4) = v, + M |25 — 24 (43)
< fxq» fv, fr,1x, >, where the parameters are defined by a
Z and® are the probability density and cumulative distribution

fx,(xa) = { g’ gtr?efwgijgeg “ (36) functions for the normal distribution [30]. N
) Hence, we reached to the following results for this improved
%7 if Vmin <V < Umag case:
frlo) = { 0" """ otherwise (37)
’ S B[] + kx (2)
d fx(@) = S—/——"7F—, (44)
an E[T,) + D
h(t,), if t,>0 - a/3
fr,1xq(tplza) = { P (398) EV] = ——— (45)
| Xa\"p 0, otherwise V] E[T,]+ D
where h(t,) is the pdf of the random variabl&,, which is \yhere
independent from the location of the destination. Denoting the 9 o a —
average time spent at the destinationsBi{,] (i.e., E[T,] = kx(z) = — /dxd /dxs/ dv=fyvix.,x,(0|zs, zq) (46)
Jo” tp h(ty) dtp), observing aJo Jz Jomin Y
1 I (Lmas ) where fy|x, x, is defined by (42).
Bl=]=— tmin’ (39) Clearly, because of the complicatednesggfy, x,, kx ()
V' (Umas — Vmin) can only be evaluated numerically for a givere [0,a], and

and using Theorems 1 and 2, we obtained the following fatso D. However, for the extreme case— 0, we have
the pdf of the long-run location distribution and the expected

value of speed at the long-run: Fvix, xa(vlws, 2a) = 0(v — p(s, 2a)) (47)
1E[T,] + 2w(a7$)E[i] From a different point of view, for the limiting case where
fx(x) = «—2 o Vo (40) o — 0, V will be linearly dependent thX, — X 4| with respect
E[T/P] +5Ely] to the following transformation:
- a/3
EV] = —/————— 41 — Vs
M= e “ T S T

We note that if the speed choice for each movement ep
is deterministic with a parametes, then E[{;] must be
substituted With%. In addition, the analytical work presented y (z) = 2(1n((vmz(a,m)ﬂvmm)/a)(gﬁ(vmz,vmm),umza)
in [21], considers two different limited variations of the one- (2 (0eman Vi) 4 Vi @) /@) (2 (Vamin —Demas) — AVemin)
dimensional result we derived for location distributions. At S : ’ N
first, they concentrate on the case whéffl},] = 0. Next, + @Wmin I0@min) @0z (0maz) )/ (a(maz ~vmin)?) (49)
they extend their analysis, and provide the location distributiop, 4 7 will be given by
for the scenario where pause time is nonzero, and speed is
deterministic (i.e., constant speed). For these two cases, if we Ho a(v

make the appropriate changes in the formationf gf given (Vmaz — Vmin)3

O‘Fnus, thekx (x) given by (46) simplifies to

2 2 Vmaw
taz — Vmin — 2VminVUmaz (72 ))

(50)




Now, after substituting theD given above by (50) to the fx,(xq) uniquely from integral equation (9), it must satisfy

equation for E[V] (45), a comparison of thaF[V] with the conditions of ergodicity at fist. Therefore,or 3 can not
the one defined by (41) in Example 1 reveals that siné equal ta) or 1, which is already required in the formulation
D (50) is less thar(a/3)"{naz/tnin) (e D) in Example of fx,x,.

1) for all vmee > vmin > 0, the E[V] obtained for the  Hence, by applying the integral equation defined in (9), we
uniformly distributedV’ is always smaller than its counterpar€an derive thefx, (zq) for this example as follows:

for the V' that is defined by (48). This is consistent with the l1—a [c

. .. . c fo fXS (xs)dirs

intuitive expectations because wh&h = vy + ((Vmes — 3 ra d it 0

Umin)/a) &5 — 24|, the possibility of moving long distances ¢ () — e fccfxs (@s)dzs, if zq € [0,c) (53)
with low speeds becomes zero. On the other hand, for the™” o ) fx.(xs)d,

original random waypoint mobility model, sincé is not o2 [ fx (@) dag, i @ € [e,a)

directly proportional taD, lower speeds might be selected for =~ =

longer distances and as a result, expected value of the long-A[}ch implies

speed decreases. It should be also noted thafy[&s] — 0 ki, if x4 €[0,¢)
and vmaz — Umin, E[V] converges ta,;, for both choices fx.(xa) = { ko, if x4 € [c,a)
of V, which is also expected because it corresponds to
scenario where mobile travels with fixed speed;, at all
times without pausing at any destination.

The other extreme case of interest for this example
o — oo, which simplifies to the scenario wheveis uniformly
distributed in [vmin, Umaz]. Therefore, we conclude that, if 5
fvix..x, is defined according to (42), the lower bound for /C _ /a __«a
E[lf/] is given by (41) in Example 1, and the upper bound for OfX‘* (za)dza (a+p)’ CfX‘S (wa)dea (a+03) (53)
it is given by (45) with theD defined as in (50). Obviously, which concludes
the difference between these bounds decreasg$g$ — oo, 31
Ol Umin — Vmaz- fXS (xd) = { (a;rﬁ) C71

(a+p) (a—c)’
B. Variants of mobility characterizations done Iy, x, Next, we focus on a more generic form for this scenario.

Example 3:As a basic example of a scheme where districonsider a partitioning of the regio®R = [0,a] into M
bution of X, is dependent orX,, consider a scenario wheresubregionsk; = [a;, a;11),% = 1,..., M such thata; ;1 > a;
the closed regiotR = [0, a] is partitioned into two subregionsWith a; = 0, axr41 = a, and let the stochastic density kernel
Ry = [0,¢) and Ry = [c,a) such that0 < ¢ < a. In this be defined by

(54)

t]%er some constants; andk, € R.

Now, let 74 denote the steady state distribution of the
IIDTMC {Xa,,k € N} with transition probabilityA. Observe
tﬁatm = [(a%ﬁ, (Q‘XT)], and sincg X, , k € N} determines
the subregionXy is located, we get

if 24 €10,¢)

if 24 € [c,a) (56)

setting, when the starting poink, € R;, the destination A if o€ R, andzy € R

point X, for that epoch will be distributed uniformly over aj+1—a;’ 0 TE v '

either R, or R, with respective probabilities and (1 — a) Xl (walzs)= hj=1,....M 7
where0 < « < 1. Similarly, if X, € Ry , then X, will be 0, otherwise

distributed uniformly over eithef?; or R, with probabilities \ynere A;; denote the probability of selecting, uniformly
f and (1 — /), respectively wheré) < § < 1. Hence, the i supregionR; given thatX, is located in subregiot;.

stochastic density kernglx,|x, will be formulated by Similar to the discussions for the solution of the integral
1o if 2, € [0,¢) andzy € [0, ¢) equation given by (53), since the functigfix, x, (z4|zs) is
c independent fromz, in all of the different subregions for
acer T @5 €[0,¢) andzy € [c,a) zs, fx.(xq) will be equal to a constant value in all of the
Ixax. (Talzs)= % if x5 € [c,a) andzy € [0,¢) (B1) subregionsR;, i = 1,...,M, as in (54). Therefore, if the
1-8 DTMC {X, _,k € N} with the M x M transition probability
e 1o EI[C’ a) andz € [¢,a) matrix ;El - [A; ;] }is irreducible and aperiodic, then the
0, otherwise stationary pdf of the destination points is given by
where0 < o < 1 and0 < g < 1. A f g e Ry i=1,...,M
Now, let X, denote theX, (i.e. destination point) of the  fx.(va) = { T (58)
kth movement epoch. Then, based on the definitiofif ’
given above (51), we can construct the DTMX, ,k € Wheremq = [ma,,...,7a,] is the solution of the linear
N1 with states that represent the subregidtis Ry, and a SystemmaA =74, |7al, = 1.
transition probability matrixA given by As an application of this scenario, we focused on the one-
R l—a o Fj|men5|onal version of the random dlrgctlon model described
A= R; [ 3 1-8 ] (52) in [31]. In this model, nodes are restricted to move between

the destinations that are located at theneighborhood of
Obviously, the DTMC{X,,,k € N} governs the decisions boundaries. After reaching the destination, mobile pauses for
of X, at consecutive movement epochs, and in order to solaespecified amount of time, and travels to a new destination,
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’—‘ «d}» ’7 ’—‘ From a practical point of view, this partitioning can be
0 b SN (@=b) a considered as a highway scenario where and H; represent
B H, Ea, , Ezs exit areas and highway segments, respectively. The exit areas
can be also considered as hotspots where mobile accumulate
Fig. 3. Highway scenario for Example 4. with higher probability. Hence, for the purpose of using
which is also located at the neighborhood of boundaries.our < fx,|x., fv|x. x. fr,x, > mobility characterization
Similar to the random waypoint mobility model, for eactapproach to capture a highway scenario that is composed of
movement epochy is selected independently fropfy, — X;|. movement epochs between exit ares or hotspots, suppose that
Now, in order to capture this model with tifg, v, defined if X, € Ex;, then X; will be uniformly distributed either
by (57) on a one-dimensional topology, we have toldet 3, over Ex;, for j # i, or over H;, j = 1,2, with respective
and divide R into subregionsR; = [0,¢), Ry = [¢,a —¢), Probabilitesa and 1/2 — o where0 < o < 1/2. Notice
and R3 = [a — ¢, a). Since, the stochastic matrit must be that, asa — 1/2, the possibility of a movement epoch to
irreducible and aperiodic, we define it by start from a highway segment, or to pause at somewhere on
a highway segment becomes negligible. Furthermore, assume

A= gl 8 8 116 (59) that if X, € H;, then X, will be uniformly distributed
R2 1 2 (2) over eitherEz; or Ez;; with equal probabilities. Thus, the
3 € ¢ stochastic density kerngly,,x. will be given by
where(0 < e < 1. Obviously, sinces cannot be equal to, N .
mobile terminals may select destination points locate@at B if @5 € E; andzg € Bj,
However, asc — 0, the possibility of this case diminishes, i # ]
and we reach to desired scenario. U2 if o, € Ex; anday € Hj
Hence, after obtaining théx_(z,4) from (58) for a nonzero fx,x.(zdlzs)= S; )/ _ (61)
e, applying Theorem 1, and finally, by taking the limit of the b 'f Ts € Hi andzy € Ex;,
result ase — 0, we derived the following for the long-run j=di+1
location distribution of this mobility model: 0, otherwise
B[Tp)/(2) + B/ V]z/e if 2 ¢ 0,¢) where( < a < 1/2
E[T,]+D _ _— . .
Bl1/V] ) qued on this def|r_1|t|on ofx,|x,, the transition _probab|I|ty
Ix(z)= BT+ D’ if 2 €e,a—c¢) (60) matrix A corresponding the DTMG X, ,k € N} is
E[T”]/(ZE;JTZE/E)V](a_w)/s, if 2 €la—e¢,a) Ex, 0 i-a a ;-a «
H |3 0 1 0 0
where D = E[1/V](a — ¢), and E[T,] is the expected pause A= Ez; | a 3—a 0 j—a « (62)
time spent at the destinations. Notice that;(x) converges H, 0 0 i 0 1
to L asE[T,] — 0 ande — 0. Exy [a 3—a a 3—a 0

Befor_e proceeding _to a more sophi_sticated scenario, Wbserve thatA satisfies the conditions of ergodicity if and
would like to emphasize an important issue about the usa&%y if o  1/2, which is also required by the definition of
of the stochastic density kerngly, x_ (zq|zs) for mobility Fxalx

d|Xs”

characterization. Now observe thag,|x, provides a mecha- ““once by applying the result given by equation (58) for the
nism to accumulate the consecutive choices of destinations

SN - NSAO of the form (57), we get
subregions insideR. The transitions between the subregions
can be also controlled by the transition probability matrix S a3y if vg € Bz, i=1,3
we defined above. Howevefx ,x, can not be employed in _ 1 ;

controlling the direction of thedr|116bile terminal at consecutive’ X+ (¥4) = | T1=a7p ff Ta € Ex2 (63)
movement epochs. For example, on the region= [0, d], STayieyy, i za € Hj, j=1,2

our formulation can not be used to capture a case Wheffﬁrthermore, since we want the terminals to pause at only exit

mogni_?ele];cts thehdest|nat|ons towar:dls thedpmvaEh higher areas, we decided on the following function for the expected
probability for each movement epoch. In order to have a proba: <o times at the destinations

bilistic mechanism to control the direction, we must extend the
mobility model with an underlying modulating Markov chain E[T,|X,] = { c, if X, € Bri, 1=1,2,3 (64)
that controls direction by making transitions at the embedded P 0, otherwise
times at which a new movement epoch starts. This is doable {pere ¢ is a constant- 0. In addition, we assume that
the discretisized version of the mobility formulation. However,
it will never end up with tractable closed form expressions like V = Upin + MD (65)
the ones we presented by Lemmas 2 and 3. a
Example 4:Consider the partitioning of the regioR = whereD = | X — X,|.
[0,a] shown in Fig. 3 where mobile terminals are expected Based to the mobility characterization parameters we de-
to move between destinations located in the subregions scribed, we generatedly and D defined in Theorem 1 by
1 =1,2,3, without pausing at the subregioi, and H-. the dividing the ranges of the double integration operations
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T T
J— fx(x)a: C=5 sec

- fx(x)a: C=15 sec
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X Fig. 5. Mobile reaches target speéd

Fig. 4. Comparison offy and fx_, asa — 1/2 for Example 4. ¢ = y
1000 m, b = 50M, vmin = 1 M/S, vmaz = 20mis, C € {5, 10, 15}sec) max

<
T

confidently to the subregions defined above. After this, we
derived the limiting expressions of them as— 1/2, and
finally we obtained the pdfx for that limiting case (i.e., the
case where destinations are only selected at the exit areas).
Since V' is dependent onD, the final form of fx is not
simple enough to fully present here. However, plots gffor
different cases, and a graphical comparison of it wfith can

be found in Fig. 4. From Fig. 4, first observe thyat and fx,

are substantially different. This is expected because, during
moving mobile terminal passes through highway segments and v % x x N
although they don’t pause at highways, the proportion of time — "

spent at highways locations increases as they move betwg;a_ns_
exit areas. Furthermore, as the expected value of pause times at
the exit areas (i.eC) increases, the value gf; at the highway
segments decreases because they spend more time on thee@@ith, a mobile terminal increases its speed fioro V
areas at the long-run. In addition, this example also shows tl@iiformly with an acceleration that hasnstantmagnitude,

a performance analysis study that makes assumptions ahgaljels at speed’ for a distance, and when it gets close
the location distribution can not ignore the times spent @B destination, it decreases its speed frbimto 0 uniformly
the highways that connect hotspots, or the subregions wh@yiégh an deceleration that is alsmnstantin magnitude. Let

(XX gV By X)

Mobile slows down before reaching target sp&ed

mobile terminals accumulate with higher probability. bace and ¢q.. denote the magnitudes of acceleration and
) ) deceleration, respectively. Before we proceed further in the
C. Modeling Acceleration analysis, we assume that the distance between the point

The obvious unrealistic characteristic of the movemeand the location at which mobile starts slowing down must be
behavior generated by our generalized approach of mobilgyactly equal to the distance required to decrease speed from
modeling is that at the beginning of a movement epoch thétto 0 with a deceleration that is equal #.. in magnitude
had started ak, and destined td,, the instantaneous speed(i.e., a symmetric environment). In addition, in the rest of
that is, speed at any instant of time, of a mobile termin#is subsection, since terminals accelerate to and from speed
jumps from 0 to V abruptly implying an acceleration thatV, which is drawn randomly fromum,in, Umaz], the random
is oo in magnitude. In addition, when mobile reaches to theariable V' will be also called as “target speed”. Hence, let
destination, it decreases froba to 0 with a deceleration that f4(Xs, X4, V. Gace, Paec, X) denote the speed of the mobile
is alsooo in magnitude. However, in realistic situations, théerminal at the point X for the movement epoch betweéén
magnitudes of acceleration and deceleration are finite, anéurad X, with target speed’, constant acceleratiof,.., and
mobile terminal cannot immediately increase its instantaneot@nstant deceleratiopy... Notice that acceleration becom@s
speed from) to V' at the pointX,, and also immediately drop when the terminal reaches target spé&&dHowever, for some
it from V to 0 at the pointX,. Clearly other random walk or exceptional cases, the absolute distance betwéeand X,
random waypoint like mobility models that we have mentionechn be so small that the mobile might be forced to decelerate
in Section | also possesses this unrealistic characteristic. before reaching to target spe&d In order to illustrate these

Now in order to remove this unrealistic movement behavi@haracteristics, in Fig. 5 and Fig. 6, we focused on a single
from our mobility formulation, assume that for each movememiovement epoch between the poifs and X,; where X; >
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X, and plotted the instantaneous speed of a terminal versimaracteristics with the long-run location distribution, it is
its location (i.e.X). Observe that when destinatidfy; is too enough to replacéﬂ[%|Xs = x,, Xq = z4] (24), which has
close toX s, mobile terminal cannot reach instantaneous spetite same value for alk between the pointX; and X4, with

V', which is selected as the speed of the movement interval

betweenX, and X, and has to decelerate after an acceleratioh|[— | Xs = ©s, Xg = 24, X = 1]

period. More 2forma||y, for the case Whel:k'd > X, let vaw
X1 = Xs+%, andX; = Xy — . Hence, ifX; < Xo, _ dv _ 20
then : ) f¢($s7xd,v,¢acc,¢dec,$) fV‘X Xd( ‘ls’xd) ( )
V2¢ace (X—X.), Xe(Xs,X1] . _
F6(Xe,Xa,Vibace,baee, X )=V, Xe(X1,Xa]  (66) andkx (22) must be redefined by
V2 2¢4cc (X—X2), X€(X2,X4] ¢ a « =
On the other hand, if{; > X, (i.e., mobile must slow down kX(x):/dxd ds gx (x5, T4, ) +/d$d dzs gx (s, T4, )
before reaching speed), then 0 =z 0

(71)
JV2¢ace (X—=X,), X€(Xs,Xmid] where
f«»(Xs.,Xd,v,mm,mec,X)—{ (L), Xe(Xuxg 07

9x (s, 24, 7)= fx,(Ts) fx o x, (Ta|Ts) B[ | Xo=0s, Xa=24, X=2]

where X p,iq = X, + 2a=X=te), (72)
For the other case wher, < X,, let X; = X, — 2;/2”, Next, notice that when acceleration-deceleration formula-

tion comes into the picture, since mobile accelerates (decel-

and Xp = Xy + 2¢> - Hence, ifX; > X,, then erates) to (from) target spedd, V (¢), that is, the speed of

V2o (XaoX),  XE(X1.X.] the mobile at time, must be defined on the sgd} U {v[0 <
Fo(Xo s Xa,Vibace baee, X)=4V, Xe(xs,xy) (68) U< Umaz }- Therefore, the distribution of (i.e., the random
VT 20000 (X—X2), XE(Xy,Xo] variable having the long-run distribution daf(¢)) can only
) ) ] be determined by considering all possible target spééds
However, if X; < X, (i.e., exceptional case), then [Umin, Umas] fOF @ given movement epoch betweef, and

oV b o = V2bmee (Ko X), XE(XmianX.] (69) Xa, and checking whether it is possible to have spéfedt_a
s &d,ViQace, Pdec, V2baee (X—Xa), XE(XuXomid] point X on t_he path betweeX, and )_(d. As a result,_ using
the formulation of=w; ; (13), we obtained the following pdf
where X,,;qa = X, %@fj) for V, which was first defined in Theorem 2 for the infinite
We note that if¢,.. = co and ¢gec = o0, thenX; = X, acceleration-deceleration case,

and X, = X, for all of the cases we defined above, and [T, |0<X, <a]3() L

consequentlyfy(Xs, Xa, V, Pace, Paec, X) = V at all points B[T,|0<X.<a]+D’ if 0=0

betweenX, and Xj. fy(0) = e do ko (2.5) . , (73)
It is now apparent from these formulations that in order m, if ¥ € (0, Vmaa]

to capture acceleration-deceleration characteristics of vehicle

mobility formulation must keep the information about th&

starting point (i.e.,X,) of each movement epoch that is des?v

Lmed ro the pointX,. bSllnce ;]/ve employ the str(])chasuc density 99 (€s, 24,7, )

hzrsnglrj;);ﬂ;( bér;nm:at:;)l/eg aracterization, this requirement = Fx(20) fxa . (@ales)io (e, 20,y Guces dacer ) (T4)
Now in order to formulate the long-run location and speeghere

distributions according to the acceleration and deceleration

parameters, we first need to extend the results given for the (Zs, Za, U, Pace, Pdec, )

discretisized mobility formulation. Returning back to Lemma  “=jg= 1

2, observe from the formulation af; ; (13) (i.e., the prob- = [dvfy|x, x,(V|Zs; Td) =1 (5= f, (2e,0a,0,bace,baeesz)}s (75)

ability of being in cellc; and moving towards celt; at the v

steady-state) that the steady-state probability of being fair

a movement epoch that had started,and destined to; with

a target speed of,. = rAw is simply o, 75, vy, ;/N. Hence, E[f/] B D (76)

_the acceleraﬂ_on and decelera_t|0n characte_rlstlcg can be easily E[T,[0 < X, <a] + D

incorporated into the formulation qf; (18) given in Lemma X

3 by substituting thez, appearing inside the formulation ofwhere D is simply given by (28), and is again defined by

k; (19) with the discretisized version of speed that can H&5), but its integrand is thex formulated above by (71).

achieved at celt; for a movement epoch that had startedat At this point, it should be noted that since the function

and destined te;. Thus, using the limiting approach that wasfs(Xs, X4, V. @ace, Paec, X) iS determined according to the

applied to derive the result presented in Theorem 1, it can bemparison of the variableX; and X5, which are defined in

easily proven that, in order to capture acceleration-deceleratienms of X, X4, V, dace, aNddgee, it is very complicated to

%erek (z, ) is defined by (35), but the integrand of it, (i.e.,
(xé,a:d, ) (35)), is reformulated by

VUmin

which implies
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2 2 < - Lo
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Fig. 7. fx for Example 5. ¢ = 1000 M, vm;n = 1 M/S, Umae = 20 M/s, Fig. 8. fx for Example 6. ¢ = 1000m, V' is uniform in [vmin; Vmaz],
E[T},] = 15 sec) Vmin = 1 M/S, Umaz = 20m/s, C = 10sec)
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find a closed form expressions fér (71) even for the sim-
plest nontrivial case (i.e., random waypoint mobility model). 1
Therefore, in the following example scenarios, which are
presented to demonstrate the effects of different acceleration- :2
deceleration parameters on the long-run location distribution
and expected value of speed at the long-run, we evaluated
and alsoD using numerical integration methods. 2 o8
Example 5:In this example, we focus on the original
random waypoint mobility model (i.e., uniformly selected 08

destination and speed, location independent pause time distri- g =05 M, g = 1St
bution). Fig. 7 depicts severgk that are obtained for different i el I
acceleration-deceleration parameters. 02 e ™
First, observe that ag,.. and¢,.. increases, the plot ofx
gets close to the plot of the case whekg,. = co and¢ge. = % 0 w0 a0 0 s0 6w 700 w0 90 1000

X

oo, Which is consistent with the intuitive expectations. Second,
for reasonable values of acceleration and deceleration, $§¢ 9. r. for Example 6. ¢ = 1000m, f,, x..x, is given by (42) = 5,
probability of the mobile terminal to be located at the centeti, = 1 m/s, vmae = 20mis,C = 105ec5 ’
of the region is lower than the case of infinite acceleration and
deceleration. difference between finite and infinite acceleration-deceleration
Example 6:For this example, we assume that the distrcases becomes noticeable as acceleration-deceleration param-
bution of X, is independent fromX, and is given by the eters decreases, especially at the center of the region.
following sinusoidal function For comparison purposes, we also concentrated on the case
. where fy|x, x, is defined by the truncated exponential dis-
31+ sin(3rzq/a)) (77) tribution (‘:Iei‘inéd in Example 2 by (42). Remember that, since
a(2 + 3) (s, z4) is linearly dependent tor,; — |, the possibility of
which has maximums at the pointg6 and 5a/6, and mini- selecting” directly proportional to X, — X,| increases as
mum ata/2. Furthermore, we assume that decreases. In Fig. 9, we set= 5 and plottedfx for different
acceleration-deceleration parameters. Notice that wihieis
Bl Xs = zs] = aC fx,(xs) (78) proportional to the distarrw)ce that is going to be traveled
whereC' > 0, which impliesE[T,|0 < X, < a] =~ 1.31C. (i.e., | Xs — X4|), the long-run location distribution becomes
Observe that, these mobility characterization parameters dass sensitive to the acceleration-deceleration characteristics
be used model a scenario where mobiles select the destinatiohgehicles. In addition, long-run proportion of times spent at
around the points/6 and 5a/6 with higher probability, and the locations connecting hotspots that are accumulated around
pause for a longer amount of time around those locations. the pointsa/6 and 5a/6 decreases wheilly is proportional
In Fig. 8, we assumed” to be uniformly distributed in to |X; — X,4|. These are expected because in this scenario,
[Umin, Umaz), @nd plottedfx for different acceleration and mobility model do not assign a spe&dfor a movement epoch
deceleration parameters. Clearly the first observation that Wt is impossible to achieve, for example, high speed for a
have made in Example 5 for the effects of the acceleratioshort distance, or a speed that is unrealistically low for long
deceleration on the random waypoint model is also valid folistance. We also note that, the experiments that are presented
this scenario. However, it is clear that for this scenario, they Fig. 9, can be also done for less valuescofHowever,

fxq(za) =
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TABLE || : ~ , , -
- (i.e., E[V]), then the acceleration-deceleration characteristics

E[V E 7 i i ili
[V] FOR ExAMPLE of the mobile terminals must be captured by the mobility

E[V] (m/s) model.
(vmin=1MIS, vimqz=20M/S)

bace Pdec ETp) || o =00 || o=10 | 0c=5 ] c=1

(/) | (m/s’) | (sec) IV. CONCLUSIONS

05 1 0 5.03 5.31 571 | 6.39 ) _
15 3 0 5.82 6.15 6.62 | 7.41 For ad hoc wireless networks, we proposed a generalized
2.5 5 0 6.02 637 | 6.84 | 7.65 random mobility model capable of capturing several scenarios,
g‘; Of (5) i‘zg i';g ;;; ggg including hotspots and displacement dependent speed distribu-
15 3 5 535 563 602 | 667 tions. The anglytlcal framewqu we presented for the Iong—run
25 5 5 552 581 620 | 6.86 analysis of this generic mobility model over one-dimensional
) ) 5 5.79 6.09 648 | 7.15 mobility terrains provided closed form expressions for the
0.5 1 15 4.10 4.26 455 | 497 long-run location and speed distributions. We also provided an
%g 2 12 2'3411 jgg g'gg g'gg extension on our results so that they can be used to examine the
pos = 15 193 515 | 542 | 588 effects of acceleration characteristics of vehicles on the long-

run location and speed distributions. Our example scenarios
verify the usefulness of our analytical framework for the mo-

since we are evaluating thiex and D numerically, the cost bility analysis and yield significant insights into how realistic
of the numerical integration procedures increases as the p.m@ebility scenarios can be brought into the capacity analysis

fvix..x, converges to the form given by (47) (i.e., the unitof wirqless ad hoc networks. Futulre wo_rk will cqnsider the

impulse function at the point(z., z4)). extension of these results to two-dimensional regions.
Example 7:As a final example, we concentrated on the

measureE[V], that is, expected speed at the long-run, which APPENDIX

is formulated by (76) for the finite acceleration-deceleration
parameters. In order to also analyze the case that captures t Proof- Si the int | i 9) i iauel |
method of determining” according to the distance that is roof: Since the integral equation (9) is uniquely solv-

going to be traveled, we considered the mobility paramete%gle’ a'r.novement epoch starts from the egliith a nonzero
of Example 2 probability ¢, at the steady-state. Hence, we can concentrate

Recall that, thefy,x. x, defined by (42) in Example 2 on the reachable stat_es from the state_s of Fhe f(lrm))
converges to the e ddistribution [onins Umae] ST — Now from the ordering of the states given in partitiSn(5),
so. Hence, we evaluate®[V/] for four gllilf:flér;natxvalues of and the transition probabilities specified in Table I, it can be
o, and for infinite and various finite acceleration-deceleratio‘?f)served that .'t is possible to jump from a pause S@t@) to
parameters. Results are shown in Table II. all of the moving states of the forrr;, ¢;, z-, 1) with some

As it can be seen in Table 11, the values/gi’] for the finite nonzero probability. Consequently, if the states of the form

acceleration-deceleration parameters are always less than t{'f?ro) is reachable from other pausing state, 0), where

counterparts that are evaluated by assuming acceleration anid-’’ then the Markov Ch?'” becomes |rre(_j_uC|bIe. Th|s_ IS easy
deceleration to be infinite. Obviously, the difference betwe prove becau_se according 0 the transition probabilities of
them increases as the parameters. and ¢,4.. decreases. the Markov chain, Fhe process jumTE)‘S to the statec;, 2, 1)

On the other hand, the gap between #g/] obtained for M Staté(c;, 0) with probability —7r,; ; and enters the
the same infinite and finite pairs @f,.. and ¢q.. decreases, Staté(c;, 0) with probability 1 in|i — j| transitions.

as E[T},) increases, which is expected because the proportionr€nce, since the Markov chain is irreducible, all states are
of time V possesses zero speed also increases. In additigﬁ(lodlc with the same period, or else all states are aperiodic.
for given values ofp,cc, daee, and E[T}], a comparison of Without loss of generality, assume we want to find out whether
the value of E[V/] with its counterpart for the infinite,.., € Staté(co,c1,21,1) is aperiodic or not. Due to the rules
¢acc Case reveals out that the difference between them gk ransitions given in Table |, if the mobile selects as
more or less the same for all values @fconsidered. From destination after reaching, then the process may go back to
this observation, we conclude thatiif,(X,, X,, V) denotes (co,¢1,21,1) in di = 4 transitions. However, after pausing at
the total distance traveled while accelerating and deceleratifigSincer is assumed to be greater thanit may also choose
during a movement epoch betwedh and X, with a target ¢2 @S destination cell with some nonzero probability. Suppose
speed ofV/, then the proportionw averaged over !t selectsc, as destination. If it selects) as target again when
all possibleX,, X4, andV is rather insensitive to the choicelt '€8ches:, then process may return back(t®, c1, 21, 1) in

of . Hence, even it/ is determined according to the distancd2 = 7 Steps. On the other hand, if it chooses at fissand
that is going to be traveled with high probability, there wilfn€Nco as destination when it is located @} then it may go

always be periods of acceleration and deceleration that affeRfcK 10 (co, ¢1, 21, 1) after leaving it ind; = 8 steps. Since
the value ofE[f/}. the greatest common divisor @f, ds, andds is 1, the state

1) becomes aperiodic. Therefore, the Markov chain
[ |

H:émOf of Lemma 1

Consequently, the results presented in Table 1l shows thaf p» €1 21
a performance measure of interest evaluated for an wirelesd®@Periodic and the proof completes.
hoc network is dependent on the expected speed at the long ruRroof of Lemma 2
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Proof: The proof is by direct substitution. First, observe  Proof: According to the state partitioning given in (5),

that all of the states in partitios; are located at celt;. Hence,
WoAgo) = [0, 90T10¥m|0,1, P0T2[0¥m|0,25 - - - » pi is simply
41007-77,71|0Vm\0n71]7 pi = Z Ps; t=0,....,n—1 (82)
71 A = [0 (1 = 70/0), 0, - .., 0], SES:
ﬂ'oAg ) +7r1A§ ) — 7. (79) Using the above equatio_n, the; ; _formglated in (13), and
expected state holding times derived in (14), and (15), we
In the same way, obtained thep; given as in (83), located at the bottom of the
ne age.
Tl'nflAg b= [‘pnflT()\nflym\nfl,Oa(pnflTl\nflym\nfl,la Pad

Now, defining
< s Pn—1Tp—-2In—-1¥Ym|n—1,n—2> O]a

i—1ln—1
wn,gAénfz) =[0,...,0,0n-1(1 = Tp_1n-1)]; ki = Z P . Z Vrle,j
7Tn—1A§n_1) + ﬂ_n_zAén—Z) -, (80) 7=0 = zi
For1 < i <n — 2, observe the following + Z ZW Tjle Z Vrle,j
Jj=14+14=0

(1)
ﬂ’A — Ta i 05 oy PiTi1|iV - 70’ . . . g .
AL = [P0 mli0; s PiTic1 iV i1 the formula given in (83) simplifies to form given by (18K
PiTit1iVmli,it+15 > (piTn71|iVm|i,n71}7

41 ) Proof of Theorem 1

o A 0 0 Z - Z i Proof: To derive this result, we first formulate the
=180 T et 2 PTG 2 PUTi Y mlb it 1 equations given in (18), (19), and (20) in terms fof, fx.,

160 =0 fx4x., andfy x_ x,, and then take the limit of the expression
‘ ’Z"‘QZT"—HZVHLM,n—l]a asn — oo (i.e., Az — 0), andm — oo (i.e., Av — 0).
n—1 £=0 n—1 . .
; First, for smallAz and Av observe the following:
7l'z+1A D Z PeTo|eVm|e,05 Z PeTi—1|tVml|e,i—15
t=it+1 t=it1 pi = fx(z})Ax, (84)
n—1
> @i 0, 0], i = Ix. (@) A, (85)
iy =T ) T = fxux. (@ Xs € ¢;) A, (86)
™ 1A7 +771AZ + g Az = ;. (81) Vplej = fV|Xs,Xd('U:|Xs € cp, Xg ECj)A’U (87)

Finally, using equalmes (79), (80), (81) and normalizing €afnere the numbers:, «*, andv’ are chosen arbitrarily within

J!
m, i =0,...,n—1,with N = Y070 |m],, it is easy to the sublntervaI:{szAa: (z—l—l)Ax) [1Az, (j+1)Az), and[rAv,
see thatn-P =, with |x|, = 1 holds, which concludes the (r+1)Av), respectivelyj, j = 0,...,n—1,andr = 1, ..., m.

proof. By inserting these approximations back to (18), (19), and (20),
Proof of Lemma 3 and canceling\z from both sides of the equation, we obtained

M |

i(1— 7)) E[Tp] + (Z e Tile Yormy 5; Vrieg + hol 2 P Tile L 3, rwu‘)m‘

j=i+14=

.

0 ¢=1i
Pi =3 1 ,—1n-1 (83)
2, (1= Z ( 2 X T Yo s = Vrieg + ZHeZ e Tie 0l 5 Vr\Lj)M
1= 1=0 “j=0 £=2 Jj=t
. Ix,(@7) (1= fx,x, (27| Xs € ¢;) Ax) E[T},,] + k]
f(xb) = n—1 'ZI 1 - . _ (87)
Z:O BT, | fx.(x7) Az — ZO E[T,]f%,x. (@7 |Xs € ¢) (Az)> + D,
i—1ln—1 m 1
ko= > ; fx,(@7) Az fx,x, (27| Xs € e) Az Z - fvix, xa(0r| Xs € co, Xa € ¢j) Av
1= 7 r=1
n—1 7
+ D fx (@) A fx,x, (53] X € ¢) Ax Z ~ Fri xa (071X € e Xa € ¢) A (88)
j=i+1 £=0 r=1
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the equation given in (87), shown at the bottom of the pagg] z. Haas, “A new routing protocol for the reconfigurable wireless

wherek; is defined by (88), and

n—1
= Zk;

1=0

(90)

(6]

(7]

To complete the proof, we have to take the limit of (87) as[s]

Az — 0. Clearly, (1 — fx,x,(zj|Xs € c;)Ax) — 1 as
Axz — 0. Now, observe the following:
AhmOE[TPI] =

. e &t Pr{T, > t,, iAz < X, < (i+1)Azx}
im
Az 50 P Pr{iAz < X, < (i + 1)Azx}
i+1)Ax
) Joy e a0 du fr, x (1)
= lim
Az—0 Jq P L(&ZUAI du fx. (u)
/ ft dt fT X CU»,t)
B v fx, ()
/ dt / dt fr,x,(x],t)
= dtp Pr{T, > t,|Xs = 27} = E[Tp|Xs = 27], (91)
0
hm ZE Ax—/ET|Xe—U]fX()
0
and
lim &}
Axz—0
Av—0
= /dxd dzs fx,(Ts) fxqx, (TalTs) Bl Xe=0,, Xa=24]
—|—/dxd ds fx,(Ts) fx,x, (Talrs) Bl& | Xo=2., Xa=24](93)
0

In addition, the terny "~ E| pl]fxd‘x (2| Xs € ¢,) (Az)?
converges to 0 adz — 0. Combining limits (91), (92), (93),
and substitutingz; with =, we obtained the result presente
in Theorem 1. [ ]
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