A video Calculus I course

Recorded at the University of Missouri - Kansas City in 2005. All times are approximate. About 29 hours total.
Available on YouTube at http://www.youtube.com/user/umkc\#p/p

YouTube Playlist:

Course: Calculus I with Professor Richard Delaware

Lecture 1 46:50

UNIT 0 - FUNCTIONS: A Review of Precalculus

Beginning

- Definition of a Function [7.5 min.]
- Visualizing Functions: Graphs [10.5 min .]
- Domain (\& Range) of Functions [7.5 min .]
- Some Exercises [11 min.]

Graphing Technology

- Viewing Windows [3.5 min.]
- Zooming In or Out [2.5 min.]
- Errors in Resolution [5.5 min.]

Lecture 2 36:29

New Functions From Old

- Operations on Functions [10 min.]
- How Operations Affect Function Graphs [6.5 min.]
- Functions with Symmetric Graphs [2 min.]
- Some Exercises [8 min.]

Families of Functions

- The Power Function Family $y=x^{p}$ [7 min.]
- The Polynomial Function, and Rational Function Families [4 min.]

Lecture 3 1:12:41

Trigonometry for Calculus

- Right Triangle Trigonometry [11.5 min.]
- Trigonometric Graphs [5 min.]
- Handy Trigonometric Identities [5 min.]
- Laws of Sine and Cosine [4 min.]
- Trigonometric Families [4 min.]

Inverse Functions

- A Function Inverse to Another Function [6 min.]
- When do Inverse Functions (\& Their Graphs) Exist? [4 min.]
- Inverse Trigonometric Functions [10 min.]

Exponential \& Logarithmic Functions

- The Exponential Function Family [6 min.]
- The Logarithmic Function Family [6.5 min.]
- Solving Exponential \& Logarithmic Equations [6 min.]

Lecture $4 \quad$ 1:32:11

UNIT 1 - LIMITS of Functions: Approach \& Destination

Intuitive Beginning

- A New Tool: The "Limit" [24 min.]
- Some Limit Examples [6.5 min.]
- Two-sided \& One-sided Limits [17 min.]
- Limits that Fail to Exist: When $f(x)$ grows without bound [9 min.]
- Limits at Infinity: When x grows without bound [11.5 min.]
- More Limits that Fail to Exist: Infinity \& Infinite Indecision [6 min.]
- An Exercise on Limits [5 min.]

Lectures 5-6 2:21:54

The Algebra of Limits as $x \rightarrow a$

- Basic Limits [7.5 min.]
- Limits of Sums, Differences, Products, Quotients, \& Roots [11 min.]
- Limits of Polynomial Functions [7 min.]
- Limits of Rational Functions \& the Apparent Appearance of 0/0 [17 min.]
- Limits of Piecewise-Defined Functions: When One-sided Limits Matter! [12 min.]
- Some Exercises [11 min.]

The Algebra of Limits as $x \rightarrow \pm \infty$: End Behavior

- Basic Limits [4.5 min.]
- Limits of Sums, Differences, Products, Quotients, \& Roots [10 min.]
- Limits of Polynomial Functions: Two End Behaviors [9 min.]
- Limits of Rational Functions: Three Types of End Behavior [16 min.]
- Limits of Functions with Radicals [9.5 min.]
- Some Exercises [6.5 min.]
- Limits of $\ln (x), e^{x}$, and More [7 min.]

Lecture $7 \quad 1: 03: 51$

Continuous Functions

- Functions Continuous (or not!) at a Single Point $x=c$ [14.5 min.]
- Functions Continuous on an Interval [6 min.]
- Properties \& Combinations of Continuous Functions [14 min.]
- The Intermediate Value Theorem \& Approximating Roots: $f(x)=0$ [13 min.]
- Some Exercises [13.5 min.]

Lecture 8 31:00

Trigonometric Functions

- The 6 Trigonometric Functions: Continuous on Their Domains [4 min.]
- When Inverses are Continuous [3 min.]
- Finding a Limit by "Squeezing" [6 min.]
- $\operatorname{Sin}(x) / x \rightarrow 1$ as $x \rightarrow 0$, and Other Limit Tales [11 min.]
- \quad Some Exercises [7 min.]

Lecture 9

54:33

UNIT 2 - The DERIVATIVE of a Function

Measuring Rates of Change

- Slopes of Tangent Lines [14 min.]
- One-Dimensional Motion [7 min.]
- Average Velocity [6.5 min.]
- Instantaneous Velocity [8 min.]
- General Rates of Change [8.5 min.]
- Some Exercises [10.5 min.]

Lecture $10 \quad 52: 16$

What is a Derivative?

- Definition of the Derived Function: The "Derivative", \& Slopes of Tangent Lines [11 min.]
- Instantaneous Velocity [2 min.]
- Functions Differentiable (or not!) at a Single Point [9 min.]
- Functions Differentiable on an Interval [3 min.]
- A Function Differentiable at a point is Continuous at that point [6 min.]
- Other Derivative Notations [4 min.]
- Some Exercises [11 min.]

Lecture $11 \quad$ 1:14:22

Finding Derivatives I: Basic Rules

- The Power Rule [13.5 min.]
- Constant Multiple, Sum, \& Difference Rules [5.5 min.]
- Notation for Derivatives of Derivatives [6 min.]
- \quad Some Exercises [7 min.]

Finding Derivatives II:

- The Product Rule [14.5 min.]
- The Quotient Rule [9 min.]
- Some Exercises [10 min.]

Lecture $12 \quad 53: 00$

Finding Derivatives III:

- The Sine Function [5 min.]
- The Other Trigonometric Functions [9 min.]
- Some Applications [11 min.]

Finding Derivatives IV:

- The Chain Rule: Derivatives of Compositions of Functions [14.5 min.]
- Generalized Derivative Formulas [5.5 min.]
- Some Exercises [8 min.]

Lecture 13
 48:13

When Rates of Change are Related

- Differentiating Equations to "Relate Rates" [10 min.]
- A Strategy [14.5 min.]
- An Exercise [11 min.]

More on Derivatives

- Local Linear Approximations of Non-Linear Functions [7 min.]
- Defining " $d x$ " and " $d y$ " Alone [5 min.]

Lecture 14 55:56

UNIT 3 - Some Special DERIVATIVES

Implicit Differentiation

- Functions Defined Implicitly [7 min.]
- Derivatives of Functions Defined Implicitly [7.5 min.]
- The Derivative of Rational Powers of x [6 min.]
- Some Exercises [6 min.]

Derivatives Involving Logarithms

- Derivatives of Logarithmic Functions [14.5 min.]
- The "Logarithmic Differentiation" Technique [5.5 min.]
- The Derivative of Irrational Powers of x [3.5 min.]
- Some Exercises [5 min.]

Lecture $15 \quad$ 1:11:43

Derivatives Involving Inverses

- Derivatives of Inverse Functions [10 min.]
- Derivatives of Exponential Functions [7.5 min.]
- Derivatives of Inverse Trigonometric Functions [6 min.]
- Some Exercises [5 min.]

Finding Limits Using Differentiation

- Limits of Quotients that appear to be "Indeterminate": The Rule of L'Hopital [14 min.]
- Some Examples [11 min.]
- Finding Other "Indeterminate" Limits [16 min.]

Lecture 16 1:06:37

UNIT 4 - The DERIVATIVE Applied

Analyzing the Graphs of Functions I

- Increasing \& Decreasing Functions: The $1^{\text {st }}$ Derivative Applied [16 min.]
- Functions Concave Up or Concave Down: The $2^{\text {nd }}$ Derivative Applied [14 min.]
- When Concavity Changes: Inflection Points [19 min.]
- Logistic Growth Curves: A Brief Look [3 min.]
- Some Exercises [14 min.]

Lecture 17 1:01:11

Analyzing the Graphs of Functions II

- Local Maximums \& Minimums [11 min.]
- The $1^{\text {st }}$ Derivative Test for Local Maximums \& Minimums [7.5 min.]
- The $2^{\text {nd }}$ Derivative Test for Local Maximums \& Minimums [9.5 min.]
- Polynomial Function Graphs [15 min.]
- Some Exercises [17.5 min.]

Lecture $18 \quad 56: 40$

Analyzing the Graphs of Functions III

- What to Look For in a Graph [2 min.]
- Rational Function Graphs [19.5 min.]
- Functions Whose Graphs have Vertical Tangents or Cusps [16 min.]
- Some Exercises [18.5 min.]

Lecture $19 \quad 44: 30$

Analyzing the Graphs of Functions IV

- Global Maximums \& Minimums [4.5 min.]
- Global Extrema on (finite) Closed Intervals [10 min.]
- Global Extrema on (finite or infinite) Open Intervals [13 min.]
- When a Single Local Extremum must be Global [4.5 min.]
- Some Exercises [12 min.]

Lecture 20 1:02:23

Optimization Problems

- Applied Maximum \& Minimum Problems [4 min.]
- Optimization over a (finite) Closed Interval: Maximizing Area or Volume, Minimizing Cost [21.5 min.]
- Optimization over Other Intervals: Minimizing Materials or Distance [11 min.]
- An Economics Application: Cost, Revenue, Profit, \& Marginal Analysis [9 min.]
- Some Exercises [17 min.]

Lecture 21
 1:05:46

Newton's Method for Approximating Roots of Equations

- Development of the Method [12 min.]
- Strength \& Weaknesses of the Method [5.5 min.]

The Mean Value Theorem for Derivatives

- A Special Case of the Mean Value Theorem: Rolle's Theorem [8.5 min.]
- The (Full) Mean Value Theorem for Derivatives [20 min.]
- Direct Consequences of This Mean Value Theorem [13 min.]
- Some Exercises [7 min.]

Lecture $22 \quad 36: 30$

One-Dimensional Motion \& the Derivative

- Rectilinear Motion Revisited [4.5 min.]
- Velocity, Speed, \& Acceleration [12 min.]
- Analyzing a Position Graph [8.5 min.]
- An Exercise [11.5 min.]

UNIT 5 - The INTEGRAL of a Function

The Question of Area

- Brief History and Overview [17.5 min.]

Lecture 23 1:05:51

The Indefinite Integral

- "Undo-ing" a Derivative: Antiderivative = Indefinite Integral [16 min.]
- Finding Antiderivatives [22 min.]
- The Graphs of Antiderivatives: Integral Curves \& the Slope Field Approximation [16.5 min.]
- The Antiderivative as Solution of a Differential Equation [5 min.]
- Some Exercises [6.5 min.]

Lecture 24 36:02

Indefinite Integration by Substitution

- The Substitution Method of Indefinite Integration: A Major Technique [7.5 min.]
- Straightforward Substitutions [10.5 min.]
- More Interesting Substitutions [11.5 min.]
- \quad Some Exercises [7 min.]

Lecture $25 \quad 50: 09$

Area Defined as a Limit

- The Sigma Shorthand for Sums [13.5 min.]
- Summation Properties \& Handy Formulas [9 min.]
- Definition of Area "Under a Curve" [15 min.]
- Net "Area" [4 min.]
- Approximating Area Numerically [2.5 min.]
- Some Exercises [6.5 min.]

Lecture 26
 40:41

The Definite Integral

- The Definite Integral Defined [11.5 min.]
- The Definite Integral of a Continuous Function = Net "Area" Under a Curve [6 min.]
- Finding Definite Integrals [10.5 min .]
- A Note on the Definite Integral of a Discontinuous Function [6 min.]
- Some Exercises [6.5 min.]

Lecture $27 \quad 45: 49$

The Fundamental Theorem of Calculus

- The Fundamental Theorem of Calculus, Part 1 [15 min.]
- Definite \& Indefinite Integrals Related [7.5 min.]
- The Mean Value Theorem for Integrals [9.5 min .]
- The Fundamental Theorem of Calculus, Part 2 [7 min.]
- Differentiation \& Integration are Inverse Processes [2 min.]
- Some Exercises [5 min.]

Lecture 28

One-Dimensional Motion \& the Integral

- Position, Velocity, Distance, \& Displacement [16 min.]
- Uniformly Accelerated Motion [12 min.]
- The Free Fall Motion Model [6.5 min.]
- An Exercise [5 min.]

Definite Integration by Substitution

- Extending the Substitution Method of Integration to Definite Integrals [9 min.]
- Some Exercises [4 min.]

Lecture 29 23:57

UNIT 6 - The DEFINITE INTEGRAL Applied

Plane Area

- Area Between Two Curves [One Floor, One Ceiling] [11 min.]
- Area Between Two Curves [One Left, One Right] [7.5 min.]
- An Exercise [5.5 min.]

Lecture 29 Part II 49:06

Volumes I

- Volumes by Slicing [12.5 min.]
- Volumes of Solids of Revolution: Disks [15.5 min.]
- Volumes of Solids of Revolution: Washers [12 min.]
- Some Exercises [8.5 min.]

Lecture $30 \quad 20: 38$

Volumes II

- Volumes of Solids of Revolution: Cylindrical Shells [14.5 min.]
- An Exercise [6 min.]

Length of a Plane Curve

- Finding Arc Lengths [11.5 min.]
- Finding Arc Lengths of Parametric Curves [6.5 min.]

Lecture $31 \quad 44: 01$

Average Value of a Function

- Average (Mean) Value of a Continuous Function [13 min.]

Work

- Work Done by a Constant Force [3 min.]
- Work Done by a Variable Force [13.5 min.]
- Do-It-Yourself Integrals: Pumping Fluids [8 min.]
- Work as Change in Kinetic Energy [6 min.]
- An Exercise [5 min.]

