Your Chance to See Original, Historical, Classic, and Rare Mathematics Books

Richard Delaware

Department of Mathematics and Statistics
University of Missouri - Kansas City
delawarer@umkc.edu
Personal Web Site: http://d.faculty.umkc.edu/delawarer/ [This talk will be posted here.]
Department Web Site: http://cas.umkc.edu/math/

Thirteen books on display courtesy of the
LINDA HALL LIBRARY of Science, Engineering \& Technology
http://www.lindahall.org
5109 Cherry St., Kansas City, MO 64110
Bruce Bradley, Librarian for History of Science
(816) 926-8737

NOTE: Further special viewing of these and other books at Linda Hall Library Rare Book Room on: Thurs. Oct. 25, 2:00-5:00 pm, Fri. Oct. 26, 1:00-5:00 pm, \& Sat. Oct. 27, 10 am - 12 noon.

Images taken by Linda Hall Library; Historical notes from Bruce Bradley, and :

- Katz, Victor J., A History of Mathematics: An Introduction, ${ }^{\text {nd }}$ Ed, 1998

Contents

Chronological by date of first editions

PAGE		
3	Euclid	$1482,1570,1847$
8	Recorde	1542
10	Bombelli	1572
13	Descartes	1637
16	Galilei	1638
19	Newton	1671,1687
24	L’Hospital	1696
25	de Moivre	1718
29	Maclaurin	1742
31	Agnesi	1748
33	Notes from my History of Mathematics course	

Euclid, c. 300 BCE The Elements of Geometry

First Printed Edition, in Latin, 1482

Elementa geometria. Venice: Erhard Ratdolt, 1482.
After Gutenberg's invention of the printing press, Euclid's Elements of Geometry was the first mathematical work to be printed, and the first major work to be illustrated with mathematical diagrams.

First English Translation, 1570

The Elements of geometrie. London: Imprinted ... by John Daye, 1570.
The 1570 publication of this book, also known as the Billingsley translation, contains a preface by John Dee who also added annotations and additional theorems. This edition is especially noted for the addition of pop-ups, to illustrate problems of solid geometry as three-dimensional figures in book eleven.

Euclid in Color, 1847

Byrne, Oliver,

The first six books of the elements of Euclid, in which coloured diagrams and symbols are used instead of letters for the greater ease of learners. London: William Pickering [of P \& Chatto], 1847.

Oliver Byrne's edition of Euclid's Elements substituted colors for the usual letters to designate the angles and lines of geometric figures, making it one of the oddest and most beautiful mathematical books ever printed. It was also one of the most difficult to print, as the use of color wood blocks required exact registration to correctly align the pages for pass through the printing press for the different colors of ink.

Byrne's Euclid
http://www.sunsite.ubc.ca/DigitalMathArchives/Euclid/byrne.html

With live Java diagrams
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
The Visual Elements of Euclid
http://www.visual-euclid.org

Euclid 1570

Tbefrif Booke

ble. Wherfore it is not poffible that the inward angles being equal to rwo right anglet, the right lines hould enncurrs, Wherefors they are patallels' which vas requited to be proaed.
Nimblata

(18)

The 20.Theoreme The 29. Propofition.

 A rigbt line line falling Yppon truo paralle I right lines : maketb the alternate angles equall tbe one to the otber: and al. Jo the ounvarde angle equall to tbe imarde and oppojite angle on one and ebe /ame fide:and horeouer the invarde angles on one and the fane fide equall mo no right angles.

Vppofe that vpon thele parahellantes A Band C D do fal therigbt lime EF, Tben I ay tbat the alternate ans gles vbicb it maketb, namely, the angles $A G H$ and OHD arcequill the one to the ofber:andy for out: pard angle EGB is eqaal to the invarde and oppoe fite ang le on tle fane fide, namely, tof angle G H D: and fo the in ar ard angles on one and the felfe fame fide, that is, tbe an. gles $B G H$ and $G H D$,arecquall to two rigbt angles. For if the angle $A G H$ be notequal to the

Fenciopthatias biderinde emplation. Nivilf ferr.
angle $G H D$,tbe one of tbem ingreater. Let the angle $1 G$ H be greater. And forafmuch as the angle $A G$ Hisgreater then the angle $G H D$, put tbe anghe $B G H$ commó to the botb. $V V$ berfore ${ }^{2}$ angles $A G H$ and $B G H$, are gratater
 GHare equallsormo rigbt angles, mberfore jangles BG H G GHD arelefe the rvoright angles. But (byis 5 .peticion) if pporzo right lives do falla righe Line, makingy inmard angles on one andy fane fíte, le ße thé rwo right angles, tboje right limes being infinitly prodaced ma/t needes at y length mette on the fide $>$ berina are the anglestefle tbé tworigbt angles. VV berfore the righe lives ABand CD being infinitely produced will at j lengtb mette. Bat thoy cannot merte, becalfe they are parallels(byfuppofition): wberfore tbe angle $A G H$ is not vuequall to tbe ample GHD:wberfore it is equall.

And tbe angle AC Giis(by the s. propofition) equall to the angle EGB VVberfore (by the firft commonfentence) the angle EG B is equall to the ano gle $G H D$.

Put the angle BG H common to tbem botb:wber fore the angles EG \mathcal{T} and $B G H$, are equall to the angles $B G$ Hand $G H D$. But the angles $E G B$ and

Euclid 1570 (con.)

of Euclides Elements.
 Fol.39.

and BG H are(by therspropofition) equal to ohio right, angles, VV therefore the angles $B G H$ and $G H D$ are alpo equall to to right angles. It a lyme therefore do fall ypö two par allyl right lines it maketb the alternate angles equal the one to the otber:and di/ fo the outward angle equally fo tb e inward and epos. fire angle on one and the /ane file: and moreover the in nard angles on one and the /ane fade squall to two right angles: which was required to be dennone pirated.

This propofition is the coanerfe of the two propositions next going before. For, that which in either of them is the thing fought, or coclufion, is io this the thing geven, or fuppofition, Andcontrativile the things which in them were grue orfuppofitions, are inches proved, and are coaclufions,

Feliterim after this propofition addeth this witty conclufion.

Sappofe that there be two right lines $1 B$ and $C B$, which let cur two parallel lines $D E$ and F G: and let $A B$ cut the line D E in the point H :and let $C B$ cut the line F G in the point Risk let the lines $A B \& C B$,soncurte betwene the two parallel lines DE $\&$ FG in the point B a and let the angle $D H B$ beequa to the angle B K G:or let the angle $A H D$ be equally to the angle BK Fforfinally let the angles AH D And BK F Fe equal to two right angles, The 1 Kay that the two lines $A B$ and $B C$ are drawendi reAlly, and do make one right line. For if they be not, ,hen produce $A B$ until it cut $F G$ in the point L, and jct AL be one right line, and fo fat be made the triangle $B L K$. Now then (by the firft part of this 29.ptopolition)the angle D HB (halle equal to the alternate angle L.Bibut (by fappofition)
 the angle $D H B$ is squall to the angle $B K G$. Wherefore the angle $B L G$ is equall to the angle $B K L$, namely, the outward angle to the inwarde and oppofite angle which (by the 16 .propofition is impoffible.

Moreover (by the fecód part of this 29 . propofitiot) the angle A HD Dhalbe equal to the angle $B L X$, namely, the outward angle to the inward and oppofite angle on one and the famefice. But the fame angle A Hi D is fuppofed to be equally to the angle BK Fiwherefore the angle BK F is equally to the angle $B L$ K. Which (by the felfe false 16. proposition) is impoffible.

Lefty forafinuch as the angles $B H$ H and BK F are foppofed to be equal to two right angles, \& the angles $B H D \& B L K$ arealfo by the lift part of this 29 propofition equal to two right angles, therefore the angle BK F fhalberqual to the angle BLK. which agayne by the felfe fame 16 -propofition is impolfible.

3 biurnepuins with avery friermofors mir Rrosinit aldine EniNerias.

Drmenfraties Katuytion al/bisin. Fop/ per.

Byrne's Euclid 1847

102
 BOOK III. PROP. XX. THEOR.

FIGURE 1

HE angle at the centre of a circle, is double the angle at the circumference, when they have the fame part of the circumference for their bafe.

FIGURE 1.
Let the centre of the circle be on \qquad

FIGURE II.
FIGURE II.

Let the centre be within
, the angle at the circumference; draw \longrightarrow from the angular point through the centre of the circle ;

$$
\text { then } A=P \text {, and } A=\Delta \text {, }
$$ becaufe of the equality of the fides (B. 1. pr. 5).

Byrne’s Euclid 1847 (con.)

Hence

$$
\mathrm{But}=4+P \text {, and }
$$

$$
\begin{aligned}
D= & + \\
\therefore & =\text { twice }
\end{aligned}
$$

FIGURE III.
 draw , the diameter.

FIGURE III.

Q. E. D.

Robert Recorde, 1510-1558
 The Ground of Artes 1623 (first edition 1542)

Ground of arts; teaching the perfect works and practice of arithmeticke, both in whole numbers and fractions...afterwards augmented by John.. Dee, and since enlarged ... by John Mellis...[and] Robert Hartwell. London: John Beale for Roger Jackson, 1623.

Record wrote several books on mathematical subjects, mainly in the form of a dialog between a master and a scholar. The Grounde of Artes first appeared in 1542 and included only a section on Arithmetic. In 1557, he published the first book on algebra in English, The Whetstone of Witte, made famous by his invention of a symbol ($=$) to express equality. In this 1623 edition of the Grounde of Artes (one of at least 27 early editions!), the book on algebra was included as the second part. Ironically, the equal symbol was not used by the editors, and only slowly came into common use later in the seventeenth century.

A queftion of Satton.	Scholar. ©ertainly sir, 3 thorw not jow to renoer you contighe ffantes foa thefe be nefts fbefoco nté, whitl) me flinketh are fo caffe, oelightfull, ano pleafant, that 3 count mp relfe latpyp to be in pour companp. Mafter. 3 am glat you oelight fo fodl hárein, which ts an Art of venoerful octer rity to all forts of men of tobat oegrex 02 pere ferfion foeter they be. gno now will 3 peo. pone a queftion or two of Progrefsion Geometricall. c A Mercer bath 12 yards of Satten, which be valseih at 10 s the yard, and felle th the fast I2 yards to another wan to bepaid as followeth: That is towit, for the firift yard to banc oxe fill ling, for the fecond jard two foillings, forthe third yard fonse foillings, for the fourthyod S/billings, © c. doublong eashnumber foilowing, till tho Twelf fh and lafityard. The queftion Is, wlo

> Progreffion. 169 foho tath made the better bargaine of the buper 02 the feller.

Jirff youmapret ontore 12 , the number of the paros, as you fébore in this Example. Gnd againft eath number the number of fhillings oue to be pato, ast the D2goer of Duplation 02 Multiplication by two teas | \mathbf{S} | |
| ---: | ---: |
| \mathbf{I} | I | sheth.

IThen refozting to the ad Ding op of fumming of this Progrefsion, where 3 cont fioer that the intereafe of this

| 5 | 1 |
| ---: | ---: | ---: |
| 1 | 1 |
| 2 | 2 |
| 4 | 3 |
| 8 | 4 |
| 1 | 5 |
| 32 | 6 |
| 64 | 7 |
| 128 | 8 |
| 25 | 9 |
| 512 | 10 |
| 1024 | 11 |
| 2048 | 12 |
| 4095 | | fumpzociexer by the Multiplication of 2 , ano therefore after 3 baue dzame alime Gnoer the 12,3 baske ano multiply the laft fumme bp 2 alio, ano it véloeth) 4096 from whence 3 abate the firf number of the Progrefsion, lwhich is I , ano then reffeth 4095 : which 3 othoulo diuive by one leffe then 3 dio multiply by, but fexing it $15 \mathrm{I}, 3$ nixue Hot to siaite it : foz I (as 3 bate faio bers f02e)ooth reither multiplp noz oiutoe;theres fore 3 take that fumme 4895 for the voljole fumme of the fhillings, whith bo Reduction amountetb to $204 \mathrm{l}^{\prime}$, 1.5 s : and (ontut) hath the Mercer fos his tiwelue yards of Satten : which is 17 l', 15,30 , a earo.

$$
\mathrm{SB}_{2} \text { 迢ut }
$$

170 Progreffion.
3iut flinke you fill buy none to aeare.

Scholar. fipo fir be the grace of σ_{00} this peare.

Raffaele Bombelli, 1526-1572
 Algebra
 1579 (original edition 1572)

L'algebra opera di Rafael Bombelli da Bologna. Diuisa in tre libri. Bologna: Per Giouanni Rossi, 1579
Bombelli's was not the first book on algebra. In 1545, Girolamo Cardano explored the subject in depth in his treatise, the Ars Magna. But Cardano's was a difficult book, Bombelli judged, and the world needed an algebra text that would allow anyone to master the subject. So Bombelli wrote one between 1557 and 1560 , finally printed in 1572 , intended as a systematic and logical textbook. Only three parts (of five) were published, but it was so successful that Leibniz, who used Bombelli’s Algebra to teach himself mathematics a century later, called Bombelli the "outstanding master of the analytical art."

SECONDO.
 Sotrare di dignità composte.

Lo fotrare di dignità compofte non è differente da - fotrare di p.e m.detto nel primo libro, e come fi è proceduto nel fommare, cofi fi farà nel fotrare le figure fenz'altro comento.

214

LIBRO

 $\mathrm{m} . .^{12} \stackrel{2}{2}^{2}$ ，che aggionticon $4^{2} \mathcal{J}^{1}$ farà $4^{2} \cup^{1} \mathrm{~m} .1^{2} \underbrace{2}$ ．

Moltiplichifi 6 © p．2．uia 6 © p． 2 ．Pongafi in rego la（comefiuede）poi fi moltrplica p．2．di fotto uiap． a．difopra，fa p．4，equefto fi pone fotto la prima li－ nea，poi fi moltipli－
 ca p．2．di fotto via
 1_{2} ，effipone for－ tola linea，poifi mo！ tiplica 6 I di fotto via ${ }_{2}$ di fopra fa p． 12 ＇s，equefto fipo－ ne fotto la linea，poi fi moltiplica 6 j di fottouia 6 d difo． pra，fa $36{ }^{2}$ ，qualfi
 p．4．E perche p．12 ${ }^{2}$ ui è due uolte，f gionghino infie－ me，e faranno 24 ＇$^{\text {，fi che tutta la fomma（come fiu ue－}}$ de fotto la feconda linea）farà 36 ² p．$^{2} 4$ ป p． 4 ，Eque fo farà il pr odutto della moltupl icatione．

Moltuplichifi6 ${ }^{\text {B }}$ p． 2 uia $6{ }^{\prime} \mathrm{m} . \mathrm{m}^{2}$ Pongafi in regola， poi fi moltiplichim． 2．di fotto uia p．${ }^{2}$ ．di fopra，fam． 4 ，e poi 36．p．12，m．12，m．4． 6 moltiplichi m．2．di fotto viap 6 ン difo pra farà m． 1 亡 ， poi fi moltiplichi 6

SECONDO．

登 difotto uia p．r．di fopra，fa p． \boldsymbol{r}_{2} \＆epoi 6 difotto via $6 \underset{-}{\text { di fopra，fa }} 36{ }_{4}^{2}$ ，e tutre quefte motiplica－
 m． 4 ．E per efferci p． 12 － cm .12 己 filevano per le re－ gole date del p．\＆m．e reftaranno 36 ： m．2（come fi vede）per produtto della moltiplicatione．

René Descartes, 1596-1650
 Geometry, (an Appendix to Discourse on Method) 1637

Discours de la methode pour bien conduire sa raison, \& chercher la verite dans les sciences ... Plus la Dioptrique. Les meteores. Et la geometrie. Leiden: De l'imprimerie de Ian Maire, 1637.

Descartes' Geometry first appeared in French as an appendix to a larger work called Discourse on the Method of Properly Conducting One's Reason and of Seeking the Truth in the Sciences. The appendix on geometry was meant to illustrate the effectiveness of the method laid out in the Discourse. "Any problem in geometry," Descartes began, "can easily be reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient for its construction."

Qus les Problefmes de Geometric fe peuuent facilement reduire a tels termes, qu'il n'eft befoin paraprés que de connoiftre la longeur de quelques lignes droites, pour les conftruire.
Et comme toutel'Arithmetique n'eft compofée, que Commět de quatre ou cing operations, qui font l'Addition, la $\begin{aligned} & \text { le calcul } \\ & \text { dri- }\end{aligned}$ Souftraction, la Multiplication, la Diuifion, \& l'Extra- thmetiAtion des racines, qu'on peut prendre pour vne efpece que fe de Diuifion : Ainfi n'at'on autre chofe a faire en Geo- aux opemetrie touchant les lignes qu'on cherche, pour les pre- $\begin{gathered}\text { rations dc } \\ \text { Geme- }\end{gathered}$ parer a eftre connuës, que leur en adioufter d'autres, ou trie. en ofter; Oubien en ayant vne, que ie nommeray l'vnité pour la rapporter d'autant mieux aux nombres , \& qui peut ordinairement eftre prife a difcretion, puis en ayant encore deux autres, en trouuer vne quatriefme, qui foit al'vne de ces deux, comme l'autre eft a l'vnité, ce qui eft lemefme que la Multiplication; oubien en trouner vne quatriefme, qui foit a l'vne de ces deux, comme l'vnité Pp eft

298
La Geometrie.
eft a l'autre, ce qui eft le mefme que la Dinifion; ou enfin trouner vne, ou deux, ou plufieurs moyennes proportionnelles entrel'vnité, \& quelque autre ligne; ce qui oft le mefme que tirer la racine quarrée, on cubique,\&xc. Etie ne craindray pas d'introduire ces termes d'Arithmetique en la Geometrie, affin de me rendre plus intelligibile.

Da Mulciplication.

Soit par exemple A B l'vnité, \& qu'il faille multiplier BD par BC, ie n'ay qu'aioindre les poins A \& C, puistirer DE parallele a CA , \& B Eeft le produit de cete Multiplication.
L_{2} Divi- Oubien s'il faut diuifer BE par BD, ayant ioint les fion. poins E \& D, ie tire A C parallele a DE, \& B C eftle ${ }^{16 x e r}$ - produit de cete diuifion.
Ation dela racine quarrée.

Ou sil faut tirer la racine quarrée de GH, ie luy adioufte en ligne droite FG, qui eft l'vnité, \& diuifant FH en deux parties efgales au point K , du centre K ie tire le cercle FIH, puis efleonant du point G vne ligne droite iufques à I, à angles droits fur BH, c'eft $^{\mathrm{G} I}$ laracine cherchée. le ne dis rien icy de la racine cubique, ny des autres, à caufe que i 'en parleray plus commodement cy aprés.

Mais founent on n'a pas befoin de tracer ainfi ces li-

Livre Premier.

299
gnes fur le papier, \&il fuffift de les defigner par quelques vees de lettres, chafcune par vne feule. Comme pour adioufter chiffes ch laligne B DaGH, ie nomme l'vne a \& l'autre b, \& efcris trie. $a+b$; $\mathrm{Et} a-b$, pour fouftraire $b \mathrm{~d}^{\prime} a_{\text {; }}$, Et $a b$, pour les multiplierl'vne par l'autre; $\mathrm{Et} \div$, pour diuifer a par $b ; \mathrm{Et} a$, ou a^{2}, pour multiplier a par foy mefme; Et a^{3}, pour le multiplier encore vne fois par a, \& ainfi a l'infini; Et $\sqrt{\frac{2}{a}+b^{2}}$, pour tirer la racine quarrée $\mathrm{d}^{\prime} a^{2}+b^{2} ; \mathrm{Et}$ $\sqrt{\text { C. } a^{3}-b^{3}+a b b}$, pourtirerla racine cubique $\mathrm{d}^{\prime} a^{3}--b^{\prime}$ $+a b b$, \& ainfi des autres.
Oùileft a remarquer que par a^{2} ou b^{\prime} ou femblables, iene conçoy ordinairement que des lignes toutes fimples, encore que pour me feruir des noms vfités enl'Algebre, ieles nomme des quarrés ou des cubes, \&cc.

Galileo Galilei, 1564-1642
 Discourses and Mathematical Demonstrations Concerning Two New Sciences 1730 (Original edition 1638)

Mathematical discourses concerning two new sciences relating to mechanicks and local motion. London: Printed for J. Hooke, 1730.

Galileo is known for his telescopic discoveries and his controversial defense of Copernicus. But when the church forbade him from further speculation and writing about astronomy, he retreated to consider problems of mathematics and engineering. The result was this book setting forth the mathematical principles of statics (the strength of materials), and kinematics (the science of bodies in motion).
PROP. II.

How, and with what Proportion, a Ruler or a Prifm broader than thick, refifts Fraction more if forc'd according to its Breadth, than according to its Thicknefs.

The better to underfand this, imagine a Prifm or Ruler $a d$, whofe Breadth is $a c$, and Thicknefs much lefs $b c$;

Now the Thing here enquired after is this, viz. how it comes to pafs that it will refift the great Weight T, if we attempt to break it edgeways, as in Fig. I. but plac'd flatways, t

Dial. II. DIALOGUES.

flatways, as in Fig. II. it will not refift the Weight X, which is lefs than T: And the Thing is plain, fince we fuppofe the Fulcrum in one cafe to be under the Line ac, and in the other, under $b c$, and the Diftances of the Forces to be equal in both Cafes, viz. cd; But in the former Cafe the Diftance of the Refiftance from the Fulcrum, which is half the Line $c a$, is greater than the Diftance in the other Cafe, which is half the Line cb: Wherefore the Power of the Weight T muft be neceffarily greater than the Weight X, as much as the half of the Breadth ca is greater than half the Thicknefs $b c$, that ferving for a CounterLeaver to $c a$, and this to $c b$, to overcome the fame Refiftance, i.e. the Quantity of Fibres of the whole Bafe $a b$.

Wherefore we conclude that the fame Ruler or Prifm, which is broader than it is thick, refifts breaking more if plac'd edgeways than flatways; and that in Proportion of the Breadth to the Thicknefs.
Prop. V. Theor, V.

If two Moveables move with an equable Motion, but with unequal Velocities, and if the Spaces paffed be alfo unequal, the Proportion of the Times will be compounded of the Proportion of the Spaces, and of the Proportion of the Velocities taken reciprocally.

Dial. III. DIALOGUES.

Let A and B be two Moveables, and let the Velocity of A be to the Velocity of B , as V to T , and let the Spaces paffed be as S to R : Then, I fay, the Proportion of the Time in which A is moved, to the Time in which B is moved, is compounded of the Ratio of the Velocity T, to the Velocity V, and of the Ratio of the Space S, to the Space R. Let C be the Time of the Motion A; and as the Velocity T is to the Velocity V, fo let the Time C be to the Time E : And fince C is the Time wherein A, with the Velocity V, paffes the Space S, and fince it is as the Velocity T, of the Moveable B, to the Velocity V, fo the Time C to the Time E, E will be the Time wherein the Moveable B would pafs thro' the fame Space S.

Again, as the Space S is to the Space R, fo let the Time E be to the Time G : then tis manifeft, that G is the Time wherein B would pafs thro' the Space R : And becaufe the Proportion of C to G is compounded of the Ratios of C to E , and of E to G ; and fince the Proportion of C to E , is the fame with that of the Velocities of the Moveables A and B reciprocally taken, that is, with that of T and V : and fince the Proportion of EG is the fame with the Proportion of the Spaces S and R ; therefore the Propofition is manifeft.

Isaac Newton, 1642-1727
 Treatise on the Method of Series and Fluxions 1736 postumously (first edition 1671 in Latin, trans. by John Colson) \& Mathematical Principles of Natural Philosophy third edition, Latin 1726 (first edition 1687)

The method of fluxions and infinite series : with its application to the geometry of curve-lines. London: Printed by Henry Woodfall; and sold by John Nourse, 1736.

Newton's earliest work on the calculus, as documented in his unpublished manuscripts, came in 1665 the same year that he took his B.A. degree. His most complete exposition on the calculus was written in 1671, in Latin, but it remained unpublished until this English translation by John Colson appeared in 1736. According to Newton, a variable was regarded as a "fluent," and thought of as a function of time, while its rate of change with respect to time was called a "fluxion." The basic problem this "calculus" was to investigate relations among fluents and their fluxions.

Philosophiae naturalis principia mathematica. London: Apud Guil. \& Joh. Innys, 1726.
Neither Newton or the Royal Society had enough funds to publish the first edition of the Principia in 1687, the cost of which was borne by Newton's friend Edmond Halley. This third Latin edition, the last published during Newton's lifetime, became the basis for all subsequent editions. Newton was able to pay Henry Pemberton 200 guineas for his editorial assistance in seeing the work through the press.

Newton's Terms	Newton's Notation	Our Notation	Our Terms
Fluent	x	$x(t)$	Function of time t
Fluxion	\dot{x}	$\frac{d x}{d t}$	Derivative with respect to t

THE

METHOD of FLUXIONS

AND
INFINITESERIES; WITH ITS
Application to the Geometry of Curve-Lines.

By the Inventor
Sir I SAAC NEWTON, K^{t}.
Late Prefident of the Royal Society.
Tranflated from the AUTHOR's Latin ORIGINAL not yet made publick.

To which is fubjoin'd,
A Perpetual Comment upon the whole Work,

> Confifting of

Annotations, Illustrations, and Supplements, In order to make this Treatife A compleat Inflitution for the ufe of Learners.

By $\mathcal{F} O H N \operatorname{COLSON,M.A.~and~F.R.S.~}$ Mafter of Sir $\overline{70} \int$ epp Williamyen's free Mathematical-School at Rocheffer.

LONDON:
Printed by Henry Woodfall;
And Sold by John Nourse, at the Lamb without Temple-Bar. $\overline{\text { M.DCC.XXXVI. }}$

and Infinite Series.

Examples of Reduction by Divifon:
4. The Fraction $\frac{a a}{b \neq x}$ being proposed, divide $a a$ by $b+x$ in the following manner :

$$
\begin{aligned}
& b+x) a a+0\left(\frac{a d}{b}-\frac{a a x}{b 2}+\frac{a a x^{\prime}}{b j}-\frac{\left.a \cdot x^{2} d\right)}{b t}+\frac{a d x^{4}}{b t},\right. \text { bod. } \\
& \frac{a a+\frac{\pi a x}{6}}{0-\frac{\pi a x}{6}+0} \\
& \frac{\frac{a a x}{b}-\frac{a a x^{2}}{b^{3}}}{0+\frac{a^{2} \pi^{2}}{b^{2}}}+0
\end{aligned}
$$

The Quotient therefore is $\frac{a a}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b 5}-\frac{a^{2} x^{2}}{b^{4}+}+\frac{a^{2} x^{4}}{b^{1}}$, \&c. which Series, being infinitely continued, will be equivalent to $\frac{a a}{b+x^{*}}$. Or making x the firft Term of the Divifor, in this manner, $x+b) a a+0$ (the Quotient will be $\frac{a a}{x}-\frac{a a b}{x^{2}}+\frac{a a b 2}{x^{1}}-\frac{a * b s}{x^{4}} \& \mathrm{sc}$, found as by the foregoing Procefs.
5. In like manner the Fraction $\frac{1}{1+x x}$ will be reduced to $1-x^{4}+x^{4}-x^{6}+x^{8}$, 8 cc. or to $x^{4}-x^{-4}+x^{4}-x^{-8}, 8 \mathrm{cc}$.
6. And the Fraction $\frac{2 x^{\frac{1}{4}}-x^{\frac{3}{2}}}{1+x^{\frac{4}{2}}-3 x}$ will be reduced to $2 x^{\frac{4}{4}}-2 x$ $+7 x^{2}-13 x^{2}+34 x^{\frac{1}{2}}, 88 \mathrm{c}$.
7. Here it will be proper to observe, that I make ufe of x^{-1},
 for $\sqrt{ } x, \sqrt{x^{3}}, \sqrt{x^{1}}, 3 x ; \frac{3}{\sqrt{2}}, \& \mathrm{c}$, and of $x^{-1}, x^{-\frac{1}{1}}, x^{\frac{-}{4}}, \& \mathrm{cc}$, for $\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{x^{2}}}, \frac{1}{\sqrt{\sqrt{x}}}$, sec. And this by the Rule of Analogy, as may be apprehended from fuch Geometrical Progreffions as thee; $x^{\frac{1}{2}}, x^{t}$, $x^{2}, x^{\frac{3}{2}}, x, x^{\frac{1}{4}}, x^{\circ}$ (or 1,) $x^{\frac{1}{4}}, x^{-\frac{1}{2}}, x^{-\frac{1}{2}}, x^{-2}$, \&cc.

$$
\text { B } 2
$$

It may not be amifs to give one general Example of this Reduction, which will comprehend all particular Cafes. If the Series $a \approx$ $+b z^{2}+c z^{3}+d z^{4}$, \&cc. be given, of which we are to find any Power, or to extract any Root; let the Index of this Power or Root be m. Then prepare the moveable or left-hand Paper as you fee below, where the Terms of the given Series are fet over one another in order, at the edge of the Paper, and at equal diftances. Alfo after every Term is put a full point, as a Mark of Multiplication, and after every one, (except the firft or loweft) are put the feveral Multiples of the Index, as $m, 2 m, 3 m, 4 m$, \&cc. with the negative Sign - after them. Likewife a vinculum may be underftood to be placed over them, to connect them with the other parts of the numeral Coefficients, which are on the other Paper, and which make them compleat. Alfo the firft Term of the given Series is feparated from the reft by a line, to denote its being a Divifor, or the Denominator of a Fraction. And thus is the moveable Paper prepared.

To prepare the fixt or right-hand Paper, write down the natural Numbers $0,1,2,3,4,8<c$. under one another, at the fame equal diftances as the Terms in the other Paper, with a Point after them as a Mark of Multiplicition ; and over-againft the firf Term o write
write $a^{\infty} 2^{m}$ for the firft Term of the Series required. The reft of the Terms are to be wrote down orderly under this, as they fhall be found, which will be in this manner. To the firft Term o in the fixt Paper apply the fecond Term of the moveable Paper, and they will then exhibit this Fraction $\frac{6 a^{2} \cdot \overline{m-0} a^{m a}}{a z .1}$, which being reduced to this $m a^{m-s} b z^{m+1}$, muft be fet down in its place, for the fecond Term of the Series required. Move the moveable Paper a ftep lower, and you will have this Fraction exhibited $+c z^{3} \cdot \overline{2 m-0 .} a^{m} z^{m}$

$$
\frac{+b \approx^{2} \cdot m-1 \cdot m a^{\pi-1} b 2^{m+1}}{a \approx \cdot 2}
$$

which being reduced will become $\overline{m a^{m-1} c+m \times \frac{m-1}{2} a^{m-2} b^{2}} \times 2^{m+2}$, to be put down for the third Term of the Series required. Bring down the moveable Paper a ftep lower, and you will have the Fraction $+d z^{4} \cdot \overline{3 m-0} \cdot a^{m} z^{n}$

$$
\begin{aligned}
& +c z^{1} \cdot 2 m-1, m a^{n-1} b z^{n+1} \\
& +b z^{2} \cdot \overline{m-2} \cdot m a^{n-1} c+m \times \frac{m-1}{2} a^{n-2} b^{2} \times z^{n+1}
\end{aligned}
$$

az. 3
which reduc'd will be $m a^{m-1} d+m \times \frac{m-1}{1} a^{m-2} b c+m \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3} \times 2^{m+3}$, for the fourth Term of the Series required. And in the fame manner are all the reft of the Terms to be found.

Moveable
Paper, \& c.
$+d z^{+} \cdot 3 m-3$
$+c z^{3} \cdot \overline{2 m-}$
$+b z^{2} \cdot \overline{m-}$
$a z$.

Guillaume François, Marquis de L'Hospital, 1661-1704 Analysis of infinitely small quantities for the understanding of curves 1696

Analyse des infiniment petits pour l'intelligence des lignes courbes. Paris: De l'Imprimerie Royale, 1696.

L'Hospital learned the new calculus from Johann Bernoulli, who spent some months in Paris teaching it to L'Hospital in 1691. Since there was no textbook on the calculus, L'Hospital wrote one. Although the Analyse was the first calculus textbook ever written, it has never been translated into English. L'Hospital's Rule, which he learned from Bernoulli, first appeared here.

Abraham de Moivre, 1667-1754 The Doctrine of Chances; or, a Method of Calculating the Probabilities of Events in Play 1738 (first edition 1718)

The doctrine of chances; or, a method of calculating the probabilities of events in play. -- The second edition. London: Printed for the author, by H. Woodfall, 1738.

This book on probability theory that was first published in 1718. But in the second edition of 1738 ("Fuller, Clearer, and more Correct than the First"), de Moivre introduced the concept of normal distributions. This is now often referred to as the theorem of de Moivre-Laplace, giving a mathematical formulation for the way that "chances" and stable frequencies are related.

$$
\begin{aligned}
& \text { P R O B L E M IV. } \\
& \text { To find bow many Trials are neceflary to make it probable } \\
& \text { that an Event will bappen twice, fuppofing that a is the } \\
& \text { number of Cbances for its bappening in any one Trial, } \\
& \text { and b the number of Chances for its failing. } \\
& \text { So } 1 \text { U T1os. } \\
& \text { Let } x \text { be the number of Trials: then from what has been demon- } \\
& \text { frated in the } 16 \text { th Art. of the Introd. it follows that bx }+x a b=-1 \text { is } \\
& \text { the }
\end{aligned}
$$

40 The Döctrine of Chances.

the number of Chances whereby the Event may fail, $a+b=$ comprehending the whole number of Chances whereby it may either happen or fail, and confequently the probability of its failing is $\frac{b^{x}+x b^{x-1}}{a+b^{x}}$, but by Hypothefis the Probabilities of happening and failing are equal, we have therefore the Equation $\frac{b^{x}+x b^{x-1}}{a+A^{x}}$ $=z_{2}^{1}$, or $\overline{a+b} x=2 b^{x}+2 a b^{x-1}$, or making $a, b:: 1, q$; then $1+\frac{1}{9} x=2+\frac{2 x}{9}$. Now if in this Equation we fuppofe $q=1$, x will be found $=3$, and if we fuppofe q infinite, and alfo $\frac{x}{q}=z$, we fhall have the Equation $z=\log \cdot 2+\log \cdot \overline{1+z}$, in which taking the value of z, either by Trial or otherwife, it will be found $=1.678$ nearly; and therefore the value of x will always be the limits 39 and 1.6789 , but x will foon converge to the haft of thefe limits; for which reafon if q be not very finall, x may in all cafes be fuppofed $=1.6789$; yet if there be any fufpicion that the value of x thus taken is too little, fubftitute this value in the original Equation $1+\frac{1}{9} x=2+\frac{2 x}{9}$, and note the Error. Then if it be worth taking notice of, increafe a little the value of x, and fubftitute again this new value of x in the aforefaid Equation; and noting the new Error, the value of x may be fufficiently corrected by applying the Rule which the Arithmeticians call double falfe Pofition.

A Transcription and Explication using Modern English and Notation

From: The Doctrine of Chances, $2^{\text {nd }}$ edition, 1738, Abraham de Moivre, pp. 32-44.
Notes: All comments in smaller font and [square brackets] are mine.

PROBLEM IV.

To find how many Trials are necessary to make it equally probable that an Event will happen [at least] twice, supposing that a is the number of Chances for its happening in any one Trial, and b the number of Chances for its failing.

Solution.

Let x be the number of Trials. Then from what has been demonstrated in the $16^{\text {th }}$ Article of the Introduction it follows that $b^{x}+x a b^{x-1}$ is the number of Chances whereby the Event may fail,
[For the Event to fail to "happen [at least] twice", the Event must happen 'at most once', meaning either exactly zero times, or exactly once. Think of b as the probability of failure in one trial. Since 'Trials' are (by definition) independent, to calculate the probability of failure in every one of the x trials we multiply the individual trial probabilities, giving a total of b^{x}. This corresponds to the Event happening exactly zero times. If failure occurs in all but one trial, say the first trial, the probability is similarly calculated as a product to be $a b^{x-1}$. Since the single success (which has probability a) can occur in any one of the x trials (meaning there are x different placements of the success), then this probability must be added x times, giving $x a b^{x-1}$. This corresponds to the Event happening exactly once, and failing the other $x-1$ times. Thus, the probability that the Event fails to "happen [at least] twice" is the sum: $b^{x}+x a b^{x-1}$.]
$(a+b)^{x}$ comprehending the whole number of Chances whereby it may either happen or fail,
[Note that $(a+b)^{x}=\sum_{r=0}^{x}\binom{x}{r} a^{x-r} b^{r}=a^{x} b^{0}+x a^{x-1} b+\cdots+x a b^{x-1}+a^{0} b^{x}$. Each term counts the number of all possible arrangements for each different assignment of failures and successes to the x trials. So $(a+b)^{x}$ turns out to be the sum of the "whole number of Chances whereby it may either happen or fail..."]
and consequently the probability of its failing is

$$
\frac{b^{x}+x a b^{x-1}}{(a+b)^{x}}
$$

[His definition of probability is (the number of Chances of failure) divided by (the total possible number of Chances of success or failure).]

But, by Hypothesis, the Probabilities of happening and failing are equal.
[Meaning, both must equal $1 / 2$ (that is, they are "equally probable".)]
We have therefore the Equation

$$
\begin{gathered}
\frac{b^{x}+x a b^{x-1}}{(a+b)^{x}}=\frac{1}{2}, \text { or } \\
(a+b)^{x}=2 b^{x}+2 x a b^{x-1}, \text { or } \\
\text { making } \frac{a}{b}=\frac{1}{q} \\
\left(1+\frac{1}{q}\right)^{x}=2+\frac{2 x}{q} .
\end{gathered}
$$

[That is, divide the equation $(a+b)^{x}=2 b^{x}+2 x a b^{x-1}$ by b^{x} and then substitute $\frac{a}{b}=\frac{1}{q}$.]
Now if in this Equation we suppose $q=1, x$ will be found $=3$,
[Substituting $q=1$ we get $2^{x}=2+2 x$, hence $2^{x-1}=1+x$.
A little guessing shows that $x=3$ (trials) satisfies the equation. (There is no algebraic way to solve this equation, and a simultaneous graph of the functions on either side of the equality only reveals that there is a single intersection point at which x is positive.) Note that since both $a>0$ and $b>0$, then it follows from $\frac{a}{b}=\frac{1}{q}$ that $q>0$. Then $q=1$ is the smallest possible integral value of q here (its lower bound value).]
and if we suppose q infinite, and also $\frac{x}{q}=z$, we shall have the Equation

$$
z=\log (2)+\log (1+z)
$$

[To make sense of these statements, first observe that we can rewrite the equation above, with $\frac{x}{q}=z$, as

$$
\begin{aligned}
& \left(1+\frac{1}{q}\right)^{x}=2+\frac{2 x}{q} \\
& \left(\left(1+\frac{1}{q}\right)^{q}\right)^{\frac{x}{q}}=2\left(1+\frac{x}{q}\right) \\
& \left(\left(1+\frac{1}{q}\right)^{q}\right)^{z}=2(1+z) .
\end{aligned}
$$

Second, we recall the well-known calculus fact that as $q \rightarrow \infty$ we have

$$
\left(1+\frac{1}{q}\right)^{q} \rightarrow e
$$

where $e \approx 2.71828$ is the usual base for the natural exponential function, what he elsewhere calls the 'hyperbolic base'.
Thus, "if we suppose q infinite" we have $e^{z}=2(1+z)$ and then applying the logarithm function (to the 'hyperbolic base') to both sides we find

$$
\begin{aligned}
& \log \left(e^{z}\right)=\log [2(1+z)] \\
& z=\log (2)+\log (1+z) .]
\end{aligned}
$$

in which taking the value of z, either by Trial or otherwise, it will be found $=1.678$ nearly.
[Again, there is no algebraic way to solve this equation, or the equivalent equation $e^{z}=2(1+z)$. A simultaneous graph of the functions on either side of the equality once again only reveals that there is a single intersection point at which z is positive. But from this, or numerical trial and error, we can approximate the solution as $z \approx 1.678$.]

And therefore the value of x will always be between the limits $3 q$ and $1.678 q$, but will soon converge to the last of these limits. For which reason, if q be not very small, x may in all cases be supposed $=1.678 q$.
[The equation $\frac{x}{q}=z$ can be written as $x=z q$. So from above, when $q=1$ we found that $x=3$, which here we write as $x=$ 3q. From the last calculation, for large values of q (that is, as $q \rightarrow \infty$) we found that $x \approx 1.678 q$, meaning x "will soon converge to" this value.]

Yet if there be any suspicion that the value of x thus taken is too little, substitute this value in the original Equation

$$
\left(1+\frac{1}{q}\right)^{x}=2+\frac{2 x}{q}
$$

and note the Error. Then if it be worth taking notice of, increase a little the value of x, and substitute again this new value of x in the aforesaid Equation. And noting the new Error, the value of x may be sufficiently corrected by applying the Rule which the Arithmeticians call double false Position.
[For instance, note first that the absolute error function $\left|2+\frac{2 x}{q}-\left(1+\frac{1}{q}\right)^{x}\right|$ is an increasing function of x, the number of trials. Now, suppose that error function equals e_{1}, "the Error". Next, "increase a little the value of x ", by say $\delta>0$. Then we have $\left|2+\frac{2(x+\delta)}{q}-\left(1+\frac{1}{q}\right)^{x+\delta}\right|=e_{2}$, "the new Error". We now have two points, $\left(x, e_{1}\right),\left(x+\delta, e_{2}\right)$, where $e_{1}<e_{2}$. Where a line through these two points intersects the x-axis is our "double false Position" (linear) approximation of the true value of $x=$ the number of trials.]

Colin Maclaurin, 1698-1746 A Treatise of Fluxions
 1742

A treatise of fluxions. Edinburgh: Printed by T. W. \& T Ruddimans, 1742.
In the $18^{\text {th }}$ century, Newton's method of fluxions became widely preferred among British mathematicians as an approach to the calculus, even though Newton's book was difficult. This was largely due to the appearance in 1742 of Colin Maclaurin's clear and systematic exposition, in a Euclidean spirit, of Newton's methods in his Treatise of Fluxions. The primary reason MacLaurin wrote his text was to answer Bishop George Berkeley's correct complaint in The Analyst that the new calculus had a weak foundation.

Berkeley’s Analyst: http://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/
748. Sir Isaac Newton's binomial theorem is of excellent ufe for extracting the roots of powers, or reducing a quantity to a feries of this kind; and, having made no ufe of this theorem in demonftrating the rules in the direct method of fluxions, we may the rather give an invefligation of it from arr. 727. Let it be required to find $\overline{1+x}$, where n may reprefent any integer, number or fraction, whether it be politive or negative. It is evident from what is flown in the common algebra concerning powers and their roots, that the frit term of any power of $1+x$ is 1 , and that the fubfequent terms involve $x, x^{2}, x^{\prime}, x^{4}$, \&c. with invariable coefficients. Suppofe therefore $\overline{1+x}=$ $1+\mathrm{Ax}+\mathrm{Bx}^{2}+\mathrm{Cx}+\mathrm{D} x^{4}+\& \mathrm{c}$. where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, \&c. reprefent any foch coefficients. By finding the fluxions (art. 727.) $n \dot{x} \times \overline{1+x}^{n-1}=A \dot{x}+2 B x \dot{x}+3 \mathrm{Cx}^{3} \dot{x}+4 \mathrm{D} x^{\prime} \dot{x}$ $+\& c$, and dividing by $n x$, we have $\overline{1+x}^{n-1}=\frac{A}{n}+\frac{2 B x}{n}$ $+\frac{3 \mathrm{C} x^{1}}{n}+\frac{4 \mathrm{D} x^{\prime}}{n}+8 \mathrm{c}$. And fine this equation mut be true, whatever the value of x may be, it follows by fuppofing $x=0$, (or becaufe the fort term of $\overline{1+x^{n-1}}$ mut be 1) that $\frac{A}{n}$ $=1$. and $\mathrm{A}=n$. By taking the fluxion of the lat equation, $\overline{n \rightarrow 1} \times \overline{1+x}^{n}=2 \times \dot{x}=\frac{2 \dot{B} x}{n}+\frac{6 \mathrm{C} x \dot{x}}{n}+\frac{12 \mathrm{D} x^{2} \dot{x}}{n}+\& \mathrm{c}$. and dividing by $\overline{n-1} \times \dot{x}$, we have $\overline{1+x^{n-2}}=\frac{2 B}{n \times \overline{n-1}}+$

608 Of the inverse mel bod of Fluxions. Book II. $\frac{6 \mathrm{C} x}{n \times n-1}+\frac{1_{2} \mathrm{D}^{x}}{w \times n-1}+\& \mathrm{c}$. and by fuppofing $x=0$, (or becaufe the firft term of any power of $1+x$ mut be 1) $\frac{2 B}{n \times n-1}=1$ or $\mathrm{B}=n \times \frac{n-1}{2}$. By taking the fluxions again we find $\frac{1}{n-1} \times$ $\overline{I+x^{n-3}} \times \dot{x}=\frac{6 \mathrm{C} \dot{x}}{n \times n-1}+\frac{24 \mathrm{D} \dot{x} x}{n \times n-1}$ \&c. and $\overline{1+x^{n-3}}=$ $\frac{6 \mathrm{C}}{n \times n-1 \times \overline{n-2}}+\frac{24 \mathrm{D} x}{n \times n-1 \times \sqrt{n-2}}+\& \mathrm{c}$. fo that $\frac{6 \mathrm{C}}{n \times n-1 \times \overline{n-2}}=$ 1, or $\mathrm{C}=n \times \frac{n-1}{2} \times \frac{n-2}{3}$; and fo on. Therefore $\frac{2}{1+x^{n}}$ $=1+n x+n \times \frac{n-r}{2} \times x^{2}+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times x^{1}+\& c$. And $\overline{a+b}=\frac{\overline{a+b}}{a^{n}} \times a^{n}=\left.\overline{1+\frac{b}{a}}\right|^{n} \times d^{n}=$ (by fubftituting $\frac{b}{a}$ for $\left.x\right) s^{n}+\frac{n^{n} b}{a}+n \times \frac{n-1}{2} \times \frac{a^{n} b^{2}}{a^{2}}+n \times \frac{n-1}{2}$ $\times \frac{n-2}{3} \times \frac{n^{n} b}{a^{1}}+\& \mathrm{c} .=a^{n}+n a^{n-1} b+n \times \frac{n-1}{2} \times a^{n-2} b^{n}$ $+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times d^{n-3} b^{\prime}+\& c c$. which is the binomial! theorem.

Maria Gaetana Agnesi, 1718-1799 Foundations of Analysis for the use of Italian Youth 1748

Analytical institutions. London: Printed by Taylor and Wilks, 1801.

In an age when few women participated in science and mathematics, Maria Agnesi excelled. Her greatest achievement was an exceptionally clear two volume synthesis and textbook of the calculus published in the original Italian edition in 1748. [Curiously, the influence of Newton's "dot" notation for the calculus was so dominant in England, that when John Colson translated her book into English, he changed all her Leibniz notation into Newton notation, so that only the Italian edition reflects Agnesi's true notational choices.]

For inflance, in Fig. t, let there be a right line ABC , which is conceived as generated by the motion of the point A, and is produced in infnitana. Upon this, at any inclination, let another right line BD infift, and let it be conceived that, whith the point B moves from B to C, carrying with it the line BD from the place BD to CE. always remaining parallel to iffelf, the point D thall defribe the line FE in fuch a manner, as to pa's through all the points of the curve ADE. It is plain that the abfciffes AB, AC, as alfo the ordinates BD, CE, and likewice the arches AD, AE, will be quantities continually increafing and decreafing, and therefore are called Varialle Quawtities, or Flumt, or Howing Quantitict.

Coalhnt 2. Cowfant ®yantitios are fach, which neither increafe nor diminifh, but are quantitisa, *hat. conceived as invariable and determinate, while others vary. Such are the parameters, diameters, axes, \&c. of curve-lines.

Conftant quantities are reprefented by the firt letters of the alphabet, a, b, $6, d, \& c$. and variable quantities by the latt leters, $z, y, x, v, \& c$. juft as is ufually done in the common Algebra, in refpeet to known and unknowa quantities.

A fanion or $\begin{aligned} & \text { 3. Any infinitely little portion of a variable quantity is called it's Difference }\end{aligned}$ difiricace, or Fiurien; when it is fo fmall, as that it has to the variable itfelf a lefs proportion than any that can be affigned; and by which the fame variable being either increafed or diminifhed, it may ftill be conceived the fame as at firft.

Let AM (Fig. 2, 3.) be a curve whofe axis or diameter is AP ; and if, in AP produced, we take an infinitely little portion $\mathrm{P} p$, it will be the difference or fluxion of the abfeits AP , and therefore the two lines AP , Af, may ftill be confidered as equal, there being no aflignable proportion between the finite quantity AP, and the infinitely little portion P_{f}. From the points P, p, if we raife the two parallel ordinates PM, pm , in any angle, and draw the chord $m \mathrm{M}$ produced to B , and the tight line MR parallel to AP; then, becaule the two trimgles BPM, MRw, are fimilar, it will be BP. PM :: MR . Re. But the two quantities BP, PM, are finite, and MR is infinitely little;
then alfo Rm will be infinitely litte, and is therefore the fluxion of the ordinate PM. For the fame reafon, the chord Mm will be infinitely little; but (as will be fhown afterwards,) the chord Mm does not differ from it's little arch, and they may be taken indifferently for each orther; therefore the arch Mm will bo an infinitely little quantity, and confequently will be the fluxion or difference of the arch of the curve AM. Hence it may be plainly feen, that the fpace PMmp likewife, contained by the two ordinates PM, pm, by the infinitefimal P p, and by the infinicely little arch Mes, will be the floxion of the ares AMP, comprebended between the two co-ordinates AP, PM, and the curve AM. And drawing the two chords AM, A, the mixtilinear triangle MAer will be the fluxion of the fegment AMS, comprehended by the chord AM, and by the curve ASM.
4. The mark or chamAteriftic by which Fluxions are ufed to be expreffed, is by How fexinas putting a point over the quantity of which it is the fluxion. Thus, if the abfifs are reperfort$\mathrm{AP}=x$, then will it $\mathrm{be} \mathrm{P}_{p}$ or $\mathrm{MR}=\hat{\mathrm{S}}$. And, in like manner, if the ordi. c_{4}, and what nate $\mathrm{PM}=y$, then it will be $\mathrm{Rm}=\dot{y}$. And ate their feo
Fis. 4. making the arch of the curve $\mathrm{ASM}=$, the fpace APMS $=t$, the fegment $\mathrm{AMS}=a$, it will be $\mathrm{Mm}_{m}=j, \mathrm{PMmp}=i, \mathrm{AMm}=\dot{\mathrm{n}}$. And all thefe are called Fow Floxion, or Diffrences of the forf Order. And it may be obferved, that the foregoing fluxions are written with the affirmative fign + if their flowing quantities increafe, and with the negative fign - if they decreafe. Thus, in the curve NEC, (Fig. 4.) becaufe $\mathrm{AB}=x, \mathrm{BF}=\dot{x}, \mathrm{BC}=y$, it will be $\mathrm{DC}=-\dot{y}$, the negative fluxion of y.

- That thefe differential quantities are real things, and not mertly creatures of the imagination, (befides what is manifelt concerting them, from the methods of the Ancient, of polygons infcribed and circumferibed,) may be clearly perccived from only confidering that the ordinate MN (Fig. 4.) moves continually approaching towards BC, and finally coincides with it. But it is plain, that, before thefe two lines coincide, they will hate a diftuce between them, or a difference, which is altogether inatignable, that is, lefs than any given quantity whatever. In fuch a potition let the lines BC, FE, be fuppofed to be, and then BE, CD, will be quantities lefs than any thas can be given, and therefore will be inaffogmbit, or difforentialt, or igfinitefimath, or, fimally, fiaxiens.
Thus, by the common Geometry alone, we are aftured that not only thele infinitely lirite quantities, but infinite others of inferior orders, teally enter the compolition of geomerrical extenfion. If incommenfurable gquantities eait in Cieometry, which are infinites in their kind, as is well known to Geometmins

B2 and

How I use these books, and their translations, for my History of Mathematics class at UMKC

If the use of the history of mathematics in the classroom is to be more than a collection of generic and occasionally entertaining stories, as instructors we need to dig deeper. We need to look at the actual historical written work of mathematicians and teachers of mathematics to see how they were thinking in the context of their times. Luckily we now have access to many excellent English translations of historical mathematics, and though as working teachers we don't have time to do a comprehensive archaeological excavation into them, we can dig "test-pits" to dip into that rich past.

The struggles of the historical mathematics research community toward understanding, when it first encountered the very same issues that our students now perennially face in learning elementary mathematics, can engage those students, if we take advantage of the universal human pleasure in detective work. I present my students with copies of historical arguments, problem solutions, or proofs (with some guiding notes), and often tell them little (until after the assignment) about the author, or his or her time period. So, they are faced with extracting meaning from material that is well within their grasp, but unusual in presentation. With the power of modern notation at their fingertips, along with the hundreds and sometimes thousands of years of mathematical sophistication since the material was written, they successfully learn to read with precision and to explicate the given arguments and proofs, and in the process build confidence in their own work. They even find this exciting, especially when I reveal who the author is.

Explicate, verb, [Definition, Oxford English Dictionary]:

1.a. To unfold, unroll; to smooth out (wrinkles); to open out (what is wrapped up): to expand...

c. To spread out to view, display.
2. a. To disentangle, unravel.
3. To develop, bring out what is implicitly contained in (a notion, principle, proposition.)
4. To unfold in words; to give a detailed account of ...
6. To make clear the meaning of (anything); to remove difficulties or obscurities from; to clear up, explain.

Historical "Proof" Explication

- Read the given argument, proof, or theorem and proof combination. I have photocopied them from an original historical document, or faithful English translation. The assignment is designed to be more-or-less self-contained.
- Explicate this result, that is, to write an expository version. Your version will usually therefore be longer than the original. Remember that a "proof" is a narrative, telling the story of (proving) why the theorem is true. Your job is to make that story transparent.
- Stay as close as possible to the style and form of the argument, preserving the historical flavor and ideas of the author. Do not substitute a faster, modern statement and proof.
- You will be graded on the clarity of your exposition.
- You will also be graded on how critically you have read the result, whether you found all the confusions, omitted arguments, and so on, even if you were not able to settle all of them to your satisfaction.
- Your work may require any or all of the following:
- Clarify words, definitions, and statements. For instance, "line" may be used where "line segment" is meant, "equation" confused with "expression", or "equal" with "congruent" or "equivalent"; the same letters or words may be used for several different objects; out-of-date terminology and phrasing may need to be updated, or just made more precise.
- Is the result properly stated as a Theorem, Proposition, Lemma, Corollary, etc.? Is the Proof so named, and clearly delineated?
- Add as many pictures as you like to clarify the argument. These include "idea" pictures, as well as the usual graphs, diagrams, constructions, etc. A detailed "movie" of images is often needed.
- Include omitted arguments, or other details. Some arguments may be long enough to be stated (by you) separately as a Lemma. Do so, if you like. Other arguments may be assumed common knowledge by the author, but not clear to you or your modern readers. Tell us. This is vital to good exposition.
- Correct any mathematical errors or omissions you may find. For example, if a variable suddenly appears in a denominator, did the author consider the case when that variable might be zero? Are there other omissions of cases we would today include? Are there typographic errors? Are the calculations really correct? Take nothing for granted.
- Modernize the mathematical notation if needed, but again, stay close to the history.

